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Abstract. To increase the reliability and efficiency of the functioning of various purposes systems (in
particular, energy systems), time redundancy is used. In this paper, a semi-Markov model of a multi-
component system with component-wise storage devices, which are the sources of the time reserve, is
constructed. The stationary characteristics of reliability and efficiency of the system under consideration are
found. The analysis of the influence of storage capacities on the reliability and efficiency of the system is

been.

Introduction

To ensure the reliability and efficiency of systems, time
redundancy is used.

Time redundancy [1-6] provides the system with the
ability to use up some additional time (time reserve) to
restore performance during operation. For systems with
time redundancy, a malfunction of the system is not
necessarily accompanied by a system failure, since it is
possible to restore the system's operability for a reserve
time.

Time redundancy is used in gas transmission
systems, in which underground gas storages are the
source of time reserve, in electric power systems, time
reserve is realized due to energy storage [5, 6].

There are problems of modelling systems, and
solving optimization problems, taking into account the
availability of a reserve of time.

In [6], a semi-Markov model of a two-component
system with component-wise storage devices was
constructed; stationary characteristics of reliability were
found.

In this paper, on the basis of the theory of semi-
Markov processes with a common phase state space [7—
10, 12], a semi-Markov model of a multi-component
system with a component-wise instantly replenished time
reserve is constructed. The stationary characteristics of
the reliability and efficiency of the system are found, the
influence of the time reserve value on the obtained
characteristics is analysed.

1 Description of the system functioning

Consider the system S, consisting of N components, time
to failure of which are random variables (RVs) «, with

the distribution (DFs) F. (), a
restoration times are RVs S, with DFs G, (¢), k = LN.

functions
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Each component of the system has a random instantly
replenished time reserve [1-3] 7, with DF R, (¢). The

time reserve starts to be used at the moment the
component recovery starts. A component failure occurs
when the component is restored and the time reserve (
B, >1,) has been completely used up and continues
until the component is restored. By the time the
component is restored, the time reserve is replenished to
its original value. RVs «,, f,, 7, are assumed to be
independent in aggregate, having finite mathematical
expectations; DFs F, (¢), G,(t), R, (¢) have distribution
densities f,(t), g,(¢), 7. (¢). The failure of the system
S is determined based on the analysis of the structure of

the system. Recovery of system components is assumed
unlimited.

2 Semi-Markov model building

To describe the functioning of the system S, we use the
semi-Markov process (SMP) [8, 9] £(¢) . We introduce a

discrete-continuous phase state space of the form:

E=lids:d =(d,,dy.....d;...d,),
(1

X = (X, Xy ey Xy Xy ), X, 20, k= I,_N} R
where i =1, N is the number of the component in which
there was a change in physical condition. Component d,

of the vector d describes the physical state of the
element with the number £ :

1, if k—th component is operational,

1, if k—th component is restored and

functions due to the time reserve,

0, if k—th component is in failure.
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The continuous component x, of vector X indicates
the elapsed time since the last change in the physical
state in the component with the number £ ; note that
x,=0.

Find the residence times in the states of the system.
To do this, we introduce the RV:

a,, if z=1,
OW =3B Az, ifz=1, )

[B.-7.] .if z=0,

where A is the minimum sign, [ﬂk -7, ]+ is RV, which

DF is determined by the equality

[Ge+0m )y
P(B.>7,)

We denote by V¥ (¢) = P(5z(k) < t) the DFs of RVs
S, VW) =1-V® @), v(¢) is probability densities
of RVs 5

(0= 1.0,

P([B -] <t)=1-

W () =R, (g, )+ G (On. (1),

ng (x+Hr,(x)dx

(k) _0
Yo (0= P(B, >7,)

Then the mean residence time in the state idx is
determined by the equality:

O =/N\[55f’—xk]+, x5 =0. 3)

Define the transition probabilities of the embedded
Markov chain (EMC) {£ ;n>0}.

We introduce additional functions:

v (@), z=1,
wh (¢ (
()= {O, o
R, (g, (1), z=1,
) i ) V(1) z=1,
WTz(t) =1G,(Or.(1), z=0, W, ()=
’ - 0, z=0,1.
0, z=1,
(k)( )
Note that the functions ("’( )_— ,
P(z, > B)
Wow
f(k)( f)=—"_ k=1,N are the densities of the
P(z, <B,)
distributions.

The probability densities of the transitions of the
EMC {£,;n >0} are as follows:

N
Wf/i?d; (x; +yi)H Vd(f)(xk +3)
Iliil/ jii,ykzxk-l_yi:
No_ T k#j,y. =0,
HVdiX)(xS) J y_/
pi{éy — S#I (4)
Wd =X, HV(k )
k;tt
N
[T )
<1

s#i

J=LY, =X+,

’ k#iy, =x =0,

i

vectors d and d' differ only in the j-th component.

3 Finding the stationary distribution of
an embedded Markov chain

To find the stationary characteristics of the reliability
and efficiency of the system S, we find the stationary
distribution of the EMC {£ ;n >0} .

We introduce the following notation: let
X = (XX, Xy ) 5 then vectors x-0?,
) N
[()_c—xj)(’),t], where x, = k[}] x,, are defined as
k#i
follows:
—t, k#i, , X, —x., k#i,
@-ny = [G=x)] =47
0, k=i, ! ke, k=il

Suppose that the stationary distribution of the EMC
{&,;n >0} has densities p(igy_c) , using (4), we compose
a system of integral equations that they satisfy.

1. 1In the case of states idx, d, = 1 next transitions are
possible:
a) id"(x—-1)" >idx,0<t<x,, d" =1,

b) jd"[(F-x)".t]—>ids, t>0,d" =1.

Consequently

w(m 70,

_]‘ k;:l
0 HV(”(x —1)
s=1,
s#Q

N
vl(” (xj + I)H Vd(kk) (x)
k=1

+T — p(ﬁ@[(x—x/)(”,t])dz.
"I (-

s#]

p(id " (x-))dt+

)

2. Inthe case of states idx, d, =0, transitions will be:

a) id"(x-0)" —>idx,0<t<x,d" =1,
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b) jd[(x-x)".t]>ids, t>0,d" =1 _ pidx)
Denote by /B(idf ) =— . Then the system of
Hence, B LZEN!
k=1
(z) (t)H V(k) (x,) equations (5) — (8) will have the following form:
p(id_)_c) _ I . ko (ig(i’(f—t)(i) )dt+ 1. In the case of conditions zﬁx, cz =1
0 VO (x, —t x
gd’(s ) ~-g—_l(z’> 5(idD (-0 \d
poe ©) p(l x)—jv1 (t)p(z (x—1) ) t+
0
9
wi (e +0] [V () K i
o )H 2 B +.[ ’)(x +t)p(jd“) [(x x; )( ) ,t})dt.
+ j - 2 p(jd"[(F-x)",¢])at 0
0 7 () _ - —
HV 0 (6 =%) 2. If id¥, d =0, then
s#j
3. For idx, d, =1 transitions will be: = _[w%z) (t)[)(ic?(” ()_c—t)(i))dt+
) id® O _sid%. 0 am -1 ' (10)
a) dV(x-1)" —idx,0<t<x,d" = .
( ) / +.[w(') (x; +t)p(]d(') [(x X, ) ),t})dt.
b) id”(x-0)" —idv,0<t<x,, d" =
) [, 10,30 =T 5. Inthecase of sates 5,4, -
—_— . — —_. i i (i)
d) ja"[E-x)".t]>idE, 1>0,d° =0 IW‘)(t)p(zd” )" )dr+
Therefore '
4 ) (z) (i)
j (t)p( id? (x—1) )dt+
(l)(t)H 7 (x,) (11)
% k=1 Q) p0) @
=j o (ic?m(f—t)("))dt+ +‘[w (x; +t)p( id [(x X, ) ,t})dt+
N
0 m(x .
EI wa)’f(x +t)p(]d(’)[(x X, )m,t})dt.
(’)(I)HV(")(xk) N N
x; ~ (T 17 (k) (i) —
+J‘ - k¢z (id—(i) (_)_C—t)(i) )dt_;,_ 4 pa ZR(.[ ) p(ldf)ngk (xk)df 1 (12)
0 VO (x, —t
[1[ o %D (normalization condition).
- Let’s us introduce the following notation:
Wt *) _
1(x; +t)HV (x,) 0 pPz=11, 1
+j _ ) p(jd " [(F-x)".t])de+ : ,5“” =0, 2+ P(B, >7,)
77 (s) ‘
0 L[Vd‘, (x,—x;) —(k) :M 50 = p® . P(B >1,).
=] ) 2+P(B, >1,)
W (x; +t)H V0 (x,) Lemma. The solution to the system of equations (9)
z . _ — (12) has the following form:
+j _ ) (jd(‘)[()_c—xj)“),tJ)dt
B LACEE plide) = pOHp;fL (13)
s#j k=
_ where the constant p, is found from the normalization
4. dZ 21 [ p(idw)x =1 ®)  condition (12).
eD i RM i)

(normalization condition).

Proof. By substitution, we verify that the functions

p(zd’ )= pOH " satisfy the system of equations (9) —

(12) for any value p, .
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1. Inthe case idx, d, =1

p— - N - < f N i 1
ﬁ(idf)zpol'[p;f’— J W Op [T A de+ [v0 (x, +0p, [ ] ot = pOHpm[j O ()t + j O(x, +t)dr]
k= k=1 0 k=1

J ®© N xQ
= pOHp“’ [ [ @i + Jvf”(r')dr'] = o[ [l W ()t = pOHp“”Jf,-a)dt - pOHp;:”.
0 x; k=1 0 k=

2. If idx, d, =0 then

p(iJf):,;OHp;f) jw(”(t)pol‘[p;’;)dmjw“) (x, +t)pOHp(k’dt pOH p“‘{jw(’)(t)dt+jw(’) (x, +t)dtJ
k=

- pOHp;f> [I Wl ()t + j W, ()t J pol‘[p;f’ I W (dt = pOpr,f) I HOYE poHp<“.
k=

3. For idx, d, =1

pidx) = pOHp“" j w“’(r)poHpsﬁdH I wé?(r)poHp(“dH j W (x, +r)p0Hp;’”dt+

+j Wi (x, +t)p0Hp(k)dt—p0H p(k)( [ w0yt + j w<')(t)dt+jw“>(x +)dt + j wi (x, +t)dtj

= pOH Py I w ()dt + j Wl (t")dr' + I wi)(t)dt + j w)(t")dt' J = pOH Py ( [0yt + | wg’;(z)dtj =

0

=p01'[p;f) [Rg, (t)dr+j ”(r)dr) pOH “{ 7> B,) Idrjg,-<y+r>r,~(y)dy]=

0

=p01‘[p;1” (r[>ﬂ,-)+jr[(t)é,<r>dr} pol‘[p“’( (z.>B)+P(z,

The lemma is proved. O

Consequently, the stationary distribution of EMC
{&,;n>0} of the system in question has the following
form:

—_— N —_—
pde)=p, [ 1 P5 V" (%) (14)
k=1

where the constant p, is found from the normalization
condition.

4 Finding the stationary characteristics
of the system

To find the stationary availability factor K , mean
stationary operating time of the system to failure 7,
mean stationary restoration time 7, we use the
following formulas presented in [8, 12]:

[ m@)p(de)

_E _ +

 [m@ptde)  TAT

B))= po]_[p“’.

[ m(e)p(de) [ m(e)p(de)

E, _E )

[PeEpde’ T [PEeE)pde)

where p(de) is stationary distribution of EMC
{fn; n 20} , P(e,E_) — transition probabilities of the

EMC {&, ;n=0} to asubset of fault states E , m(e) is

mean residence time of the semi-Markov process in the
state e E.

Consider the concept of system failure: based on an
analysis of the structure of the system, on the set of all

the vectors D = {67 } a structural function [11] g(a_V ) is

defined as:

1, if the system is operational for

g(d) =1 a given combination of d components;

0, if the system is in failure.
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The set of vector d values at which the system is
operational, we denote D, , and the set of values at

which the system is by D, ie.
={d:g(d)=1}, ={d:g(d)=0}. By
assumption, D=D, WD , D.ND =O.
In accordance with the choice of D, and D , the

in failure,

phase state space E is divided into sets £, and E of
operable and fault states. E=E, UE , E,. NE =O.

We introduce the following notations for finding 7',
T :

D! is a set of vectors d € D, such that a change in

the state of one component puts the system in a failure
state (in D_),

(k
dA

:12

Al14T] S

k=1

[ nrptae)= 3.

E, D, i=l

':212

ois

_(/') (i)
747 (x, )

y

®

St—3
TF

=
Ne J

§=
s

1,
S#l

N ®
=y podejH [70 (e ), = p
0

deD, k=1 k=1 deD, k=1

(x, +1)

V(”(x )

G(J ) is the set of numbers of the components of the

vector d € D"

., changing the value of each of which
translates the vector d into D .

We find the numerator of the first of formulas (15).
Using (2), we determine the mean residence times in the
states:

N —_—
HVd(f)(xk +1)dt
EQ; = 5— ,x, =0. (16)
L1776
1

s#i

S =3

Using (16) and stationary distribution (14), we
obtain:

T v =

0 k=

N

S——a= S Al

deD. k=1 i=1

S =38

N-

Zdek)E5 —ponp(k) z HEak HE lBk/\TL HPﬂk>Tk ([ﬂk_fkr),

deD, kidy =1 ked, = ked, =0

J.m(e)p(de) Po Z H (/C)Eé‘;f) :poHp z H Eay - H E :Bk /\Tk H P ,Bk >Tk) ([ﬂA T ]+ )

deD_ k=1

deD_ k:d, =1

ked, = kd, =0

J (e,E )p(de) pol_[p‘k’ > Y i )HEak HE/}L/\T,( HPﬂk>rk ( -Tk]+),

deD’ jeG(d) k:dy =1
k¢/

B, >t,). ifd, =1,

P(
where 1(d,) = 1, ifd, =10
s T Y

z Hp(k)Eé‘(k)

kidy=1 k:d, =0
A#] k#;

z H <k)E5(k)

K :dED+ k=1 k=1 deD, k=1 deD, k=1 —
) ﬁpf,f’ﬁEééf’ Hp(“( 5" +ESY +P(B, >1,) 5(")) Hp“’(Eak-i—E B At )+P(B, >, )E[B, —Tk]+)
deD k=1 k=1 (17)
. Ea, - E ﬂk/\rk H P ﬂk >rk ([ﬂk—rkr)
_ deD, k.d; =1 kid, =1 kd, =0
N
[T(Ee, +EB,)
k=1
z HEak HE ﬂk/\‘rk) HP(ﬁ’k>rk)E([ﬂk—Tk]+)
T+ — dED k:d) =1 kid = :d, =0 , (18)
,z Z I(dj)' H Ea, - Hﬁ E(B rty): H P(B, >r,()E([ﬁk _Tk]+)
dEDE jeG(d) k:dy =1, kidy =1 k:d, =0,
k#j k#j k#j
z HEak HE ﬂk/\rk HP(ﬂk>rk)E([ﬂk—fk]+)
T7 deD._ kid, =1 kid, = :d =0 , (19)

> 3 1(d) H Ea, - H E(Brz) T1 P(B>7)E(1B. =] )

deDO JjeG(d) ke, =1 kd, =
/ﬂt] k;t(/

k:d, =0,
k#j
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where

j G (R, (t)dt
E(fnz,)= j (OR (Ot B([p-7,] )=

P(B, > 1)
In the transformations, we use the following formulas
[8, 12]:
N 0 o0
ZI‘[ ; HF(ka‘)dyk t—HEa
Ji=lo o k=1,

k¢/

ﬁ | T fi(x, +t)ﬂi(x,, +1)dx ¥t =ﬁEak,

k=1 pN , R
+ r#i k#i

where F, (¢) are distribution functions of independent
non négative random variables ¢, with mathematical
expectations Eq, .

We find the efficiency characteristics of this system,
such as the mean specific income per calendar time unit
(S) and the mean specific expenses per time unit of up-
state ( C ).To determine them, we use the formulas [10]:

[m@f,(e)p(de) [m(e)1.(e)p(de)
 [mende T Tm@pae

+

where f.(e), f.(e) are functions denoting income and
expenses in each state.

c,eek,

Let £ (e)= { _

29 —

0,ecE,,

ﬁ(e):{ ek .

Cy,

where ¢, is the income per time unit of the system up-

state, ¢, denotes expenses per time system failure.

Then
Clz HEO!,‘ HE ﬂAATA HP ﬂk>TA ([ﬂk_rk]Jr)
S: dED kedy =1 kidy =1 7\ kedy =0 _
H Ea,+EB,)
B (20)
‘sz HEak HEﬂkATk HPﬁA>Tk (ﬂx Tk])
deD_ kid, =1 fod, =1 kd, =0
N )
H Ea,+EB,)
k=1
C2Z HEak HEﬂk/\Tk HPﬁA>Tk ([ﬁk_fk]+)
= _deD ki Kd=T Kd,=0 @
ZHEak HEﬁk/\fk HPﬂA>TA (ﬂk Tk])
deD, kid; =1 ko, =1 kedy =0

Consider special cases of serial and parallel
connection of system components.

1. Parallel connection.

In this case, a system failure occurs only if all
components of the system are in failure. Formulas (17) —
(19) take the form:

N

z (B >7) ( )H(Eak+E ﬁk/\rk))

i=1 k=

K, = = ) +
[1(Ea, +EB,)
k=1

ﬁ(Ea +E(/5’ /\r))

2. Serial connection.

In this case, a system failure occurs if at least one of
the components is in a failure. Formulas (17) — (19) take
the form:

-

(Ea +E(B /\r))
K, =- ,

a N
[1(Ea, +EB,)
k=1

ﬁ(Ea +E(B, /\r))
T — i=1

+ s

P ﬂ >z' ﬁ(Eak+E ﬂk/\rk))

;tx

M<

lz::P(ﬂ, >r‘.)E([ﬁi—ri]+)ﬁ[(Eak +E(B, A1)
T = ki +
i P(ﬂ >T, )ﬁ(Eak +E(ﬂA /\'rk))
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In the case 7, = h, =const,

Iy

E(B nt,)=E(B aly) =[Gy,

E([.~5] )=E([8-h]')= T@(r)dr/P(ﬂk >h).

As an illustrative example of the use of formulas (17)
— (21), consider a system consisting of 3 components
with parallel connection in which operating time of
components K, K,, K, are Eqg =8h,
Ea, = Ea, =6 h; recovery times of K, K,, K, are
EB =0.71h, EB, = EB, =0.83h, RVs «,, B have
5th order Erlang distribution; ¢ =10 c.u., ¢,=15 c.u.
Each component has a non-random time reserve (
R () =1(t—-h),h =h,=h,=h), which varies from 0
to 0.7 hours in 0.1 increments. The corresponding values
of  T.(hh,hy), T (hh,h),  K,(h,h,h),
C(h,hy,hy), S(h,h,,h) of the system for the specified

distribution were calculated. The results are presented in
Table 1.

Table 1. The influence of the time reserve value on the system
reliability and efficiency characteristics.

C,

S O
0 0.2632 316.51 0.99917 | 12.47 | 9.9792
0.1 | 0.2297 388.01 0.99941 | 8.882 | 9.9852
0.2 | 0.1982 499.30 0.9996 5.953 | 9.9901
03 | 0.1712 693.22 0.99975 | 3.705 | 9.9938
04 | 0.1499 | 1.06*10®° | 0.99986 | 2.122 | 9.9965
0.5 | 0.1336 | 1.798*10° | 0.99993 | 1.114 | 9.9981
0.6 | 0.1211 | 3.384*10% | 0.99996 | 0.537 | 9.9991
0.7 | 0.1115 | 7.023*10% | 0.99998 | 0.238 | 9.9996

Analysis of the data in the table shows the significant
effect of the time reserve on reliability and efficiency
characteristics.

These formulas can be used to analyse the reliability
of multi-component systems "gas pipeline - underground
gas storage - consumer"; oil pipeline with tank farms (for
storing intermediate o0il reserves); electric power
systems, where the time reserve for the component is
ensured by the presence of an energy storage device.

Conclusion

In this paper, a semi-Markov model of a multi-
component system with a component-wise random
instantly replenished time reserve is constructed. The
analysis of the influence of the amount of time reserve
on the obtained reliability and efficiency characteristics is
carried out.

In the future, it is planned to build hidden semi-
Markov models of multi-component systems with an
element-wise time reserve for analysing the functioning
of energy systems.

The results of this work can be used to build semi-
Markov models of systems with various types and
strategies for using the time reserve, engineering
calculations and solving optimization problems
associated with the use of the time reserve.

The research was carried out within the state assignment of
the Minobrnauki of Russia (No. 1.10513.2018/11.12), with
financial support by RFBR (project No. 19-01-00704a).
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