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Abstract. To increase the reliability and efficiency of the functioning of various purposes systems (in 

particular, energy systems), time redundancy is used. In this paper, a semi-Markov model of a multi-

component system with component-wise storage devices, which are the sources of the time reserve, is 

constructed. The stationary characteristics of reliability and efficiency of the system under consideration are 

found. The analysis of the influence of storage capacities on the reliability and efficiency of the system is 

been. 

Introduction 

To ensure the reliability and efficiency of systems, time 

redundancy is used.  

Time redundancy [1-6] provides the system with the 

ability to use up some additional time (time reserve) to 

restore performance during operation. For systems with 

time redundancy, a malfunction of the system is not 

necessarily accompanied by a system failure, since it is 

possible to restore the system's operability for a reserve 

time.  

Time redundancy is used in gas transmission 

systems, in which underground gas storages are the 

source of time reserve, in electric power systems, time 

reserve is realized due to energy storage [5, 6]. 

There are problems of modelling systems, and 

solving optimization problems, taking into account the 

availability of a reserve of time. 

In [6], a semi-Markov model of a two-component 

system with component-wise storage devices was 

constructed; stationary characteristics of reliability were 

found. 

In this paper, on the basis of the theory of semi-

Markov processes with a common phase state space [7–

10, 12], a semi-Markov model of a multi-component 

system with a component-wise instantly replenished time 

reserve is constructed. The stationary characteristics of 

the reliability and efficiency of the system are found, the 

influence of the time reserve value on the obtained 

characteristics is analysed.  

1 Description of the system functioning 

Consider the system S, consisting of N components, time 

to failure of which are random variables (RVs) k  with 

the distribution functions (DFs) ( )kF t , a 

restoration times are RVs k  with DFs ( )kG t , 1,k N . 

Each component of the system has a random instantly 

replenished time reserve [1-3] 
k  with DF ( )kR t . The 

time reserve starts to be used at the moment the 

component recovery starts. A component failure occurs 

when the component is restored and the time reserve (

k k  ) has been completely used up and continues 

until the component is restored. By the time the 

component is restored, the time reserve is replenished to 

its original value. RVs 
k , 

k , 
k  are assumed to be 

independent in aggregate, having finite mathematical 

expectations; DFs ( )kF t , ( )kG t , ( )kR t  have distribution 

densities ( )kf t , ( )kg t , ( )kr t . The failure of the system 

S is determined based on the analysis of the structure of 

the system. Recovery of system components is assumed 

unlimited. 

2 Semi-Markov model building 

To describe the functioning of the system S , we use the 

semi-Markov process (SMP) [8, 9] ( )t . We introduce a 

discrete-continuous phase state space of the form: 
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where 1,i N  is the number of the component in which 

there was a change in physical condition. Component kd  

of the vector d  describes the physical state of the 

element with the number k : 

1, if k component is operational,

1, if k component is restored and

functions due to the time reserve,

0, if k component is in failure.

k

th

th
d

th

     


       
 

     
         

       
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
        

 

 
 

  

 

 
       

 

 
    

 
, 0Web of Conferences https://doi.org/10.1051/e3sconf/20191390 E3S 139 (2019)10 1065

RSES 2019
65

   © The Authors,  published  by EDP Sciences.  This  is  an open  access  article distributed under the  terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/). 

mailto:xaevec@mail.ru


 

The continuous component 
kx  of vector x  indicates 

the elapsed time since the last change in the physical 

state in the component with the number k ; note that 

0ix  . 

Find the residence times in the states of the system. 

To do this, we introduce the RV: 
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, if 0,
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   (2) 

where   is the minimum sign,  k k 


  is RV, which 

DF is determined by the equality 
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. 

We denote by  ( ) ( )( )k k

z zV t P t   the DFs of RVs 

( )k

z , ( ) ( )( ) 1 ( )k k

z zV t V t  , ( ) ( )k

zv t  is probability densities 

of RVs ( )k

z : 

( )

1 ( ) ( )k

kv t f t ,  
( )

1
( ) ( ) ( ) ( ) ( )k

k k k kv t R t g t G t r t  , 

( ) 0

0

( ) ( )

( )
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v t
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. 

Then the mean residence time in the state idx  is 

determined by the equality: 

( )

1
k

N
k

d kidx
k

x 




    , 0ix  .   (3) 

Define the transition probabilities of the embedded 

Markov chain (EMC) { ;n 0}n  . 

We introduce additional functions:  
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Note that the functions 
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 are the densities of the 

distributions. 

The probability densities of the transitions of the 

EMC { ;n 0}n   are as follows: 
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vectors d  and d   differ only in the j-th component. 

3 Finding the stationary distribution of 
an embedded Markov chain  

To find the stationary characteristics of the reliability 

and efficiency of the system S, we find the stationary 

distribution of the EMC { ;n 0}n  . 

We introduce the following notation: let 

1 2( , ,..., )Nx x x x , then vectors ( )( ) ix t , 

( )( ) , ,i

jx x t    where 
1,

N

j k
k
k i

x x



  , are defined as 

follows: 
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Suppose that the stationary distribution of the EMC 

{ ;n 0}n   has densities ( )idx , using (4), we compose 

a system of integral equations that they satisfy. 

1. In the case of states ,  1iidx d   next transitions are 

possible: 

a) ( ) ( ) ( )( ) , 0 ,  1,i i i

j iid x t idx t x d        

b) 
( ) ( ) ( )( ) , ,  0,  1.i i i

j ijd x x t idx t d        

Consequently  
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2. In the case of states ,  0iidx d  , transitions will be: 

a) ( ) ( ) ( )( ) , 0 ,  1,i i i

j iid x t idx t x d       
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b) 
( ) ( ) ( )( ) , ,  0,  1.i i i

j ijd x x t idx t d         

Hence,  
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3. For ,  1iidx d   transitions will be: 

a) ( ) ( ) ( )( ) , 0 ,  1,i i i

j iid x t idx t x d        

b) ( ) ( ) ( )( ) , 0 ,  0,i i i

j iid x t idx t x d        

c) ( ) ( ) ( )( ) , ,  0,  1,i i i

j ijd x x t idx t d        

d) ( ) ( ) ( )( ) , ,  0,  0.i i i

j ijd x x t idx t d        

Therefore,  
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4.  
( , )
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1

1
N i

N
i

id D R

idx dx




            (8) 

(normalization condition). 

Denote by  
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. Then the system of 

equations (5) – (8) will have the following form: 

1. In the case of conditions ,  1iidx d    
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2. If ,  0iidx d  , then  
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3. In the case of states ,  1iidx d    
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4.   
( , )
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1 1
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          (12) 

(normalization condition). 

Let`s us introduce the following notation: 
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Lemma. The solution to the system of equations (9) 

– (12) has the following form: 
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      (13) 

where the constant 0  is found from the normalization 

condition (12).  

Proof. By substitution, we verify that the functions 
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   satisfy the system of equations (9) – 

(12) for any value 
0 .  
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1. In the case ,  1iidx d    
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The lemma is proved. □ 

Consequently, the stationary distribution of EMC 

{ ;n 0}n   of the system in question has the following 

form: 
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where the constant 
0  is found from the normalization 

condition. 

4 Finding the stationary characteristics 
of the system 

To find the stationary availability factor aK , mean 

stationary operating time of the system to failure T
, 

mean stationary restoration time T
, we use the 

following formulas presented in [8, 12]: 
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where ( )de  is stationary distribution of EMC 

 ; 0n n  , ( , )P e E  – transition probabilities of the 

EMC { ; 0}n n   to a subset of fault states E , ( )m e  is 

mean residence time of the semi-Markov process in the 

state e E .  

Consider the concept of system failure: based on an 

analysis of the structure of the system, on the set of all 

the vectors  D d  a structural function [11] ( )g d  is 

defined as: 

1,  if the system is operational for

( ) a given combination of  components;

0,  if the system is in failure.
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The set of vector d  values at which the system is 

operational, we denote D
, and the set of values at 

which the system is in failure, by D
, i.e. 

 : ( ) 1D d g d   ,  : ( ) 0D d g d   . By 

assumption, D D D   , D D   . 

In accordance with the choice of D
 and D

, the 

phase state space Е  is divided into sets Е
 and Е

 of 

operable and fault states. E E E   , E E   .  

We introduce the following notations for finding Т
, 

Т
:  

0D
 is a set of vectors d D  such that a change in 

the state of one component puts the system in a failure 

state (in D
), 

( )G d  is the set of numbers of the components of the 

vector 
0d D , changing the value of each of which 

translates the vector d  into D
. 

We find the numerator of the first of formulas (15). 

Using (2), we determine the mean residence times in the 

states: 
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In the transformations, we use the following formulas 

[8, 12]: 

1 1, 10 0

... ( ) ( ) ,
N NN

j k k k j

j k j
k j

F t F y t dy dt E
 

  


 
  
 
 
 

     

,
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1 1, 1,0

( ) ( ) ,
N k

N NN
k

i i r r k

k r kR
r i k i

f x t F x t dx dt E





  
 

       

where ( )kF t  are distribution functions of independent 

non négative random variables 
k  with mathematical 

expectations 
kE . 

We find the efficiency characteristics of this system, 

such as the mean specific income per calendar time unit 

(S) and the mean specific expenses per time unit of up-

state (С ).To determine them, we use the formulas [10]: 

( ) ( ) ( )

,
( ) ( )

s

Е

Е

m e f e de

S
m e de








  

( ) ( ) ( )

,
( ) ( )
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Е

Е

m e f e de

С
m e de











 

where ( )sf e , ( )сf e  are functions denoting income and 

expenses in each state. 

Let 
1

2

,  ,
( )

,  ,
s

с e E
f e

c e E






 

 
 

2

0,  ,
( )

,  .
c

e E
f e

c e E






 


  

where 
1с  is the income per time unit of the system up-

state, 
2c  denotes expenses per time system failure. 

Then  
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(20) 
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 (21) 

Consider special cases of serial and parallel 

connection of system components. 

1. Parallel connection. 

In this case, a system failure occurs only if all 

components of the system are in failure. Formulas (17) – 

(19) take the form: 

      

 

  

 

1 1,

1

1

1

[ ]

     ,

NN

i i i i k k k

i k
k i

a N

k k

k

N

i i i

i

N

k k

k

P E E E

K

E E

E E

E E

      

 

  

 



 








   

 



 





 







 

   

     

1

1 1,

[ ]

,

[ ]

N

i i i i

i

NN

i i k k k k

i k
k i

P E

Т

P P E

   

     









 


 


 
   
 
 
 



 

 

      

     

  

     

1 1,

1 1,

1

1 1,

[ ]

[ ]

     .

[ ]

NN

i i i i k k k

i k
k i

NN

i i k k k k

i k
k i

N

i i i

i

NN

i i k k k k

i k
k i

P E E E

Т

P P E

E E

P P E

      

     

  

     



 






 






 


   

 
 
   
 
 
 

 


 
   
 
 
 

 

 



 

 

2. Serial connection.  

In this case, a system failure occurs if at least one of 

the components is in a failure. Formulas (17) – (19) take 

the form: 
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In the case 
k kh const   ,  

   
0

( )
kh

k k k k kE E h G t dt       , 

      ( ) ( ).

k

k k k k k k k

h

E E h G t dt P h   


 
      

As an illustrative example of the use of formulas (17) 

– (21), consider a system consisting of 3 components 

with parallel connection in which operating time of 

components 
1K , 

2K , 
3K  are 

1E  = 8 h, 

2E  = 
3E  = 6 h; recovery times of 

1K , 
2K , 

3K  are 

1E  = 0.71 h, 
2E  = 

3E  = 0.83 h, RVs 
i , 

i  have 

5th order Erlang distribution; 
1с =10 c.u., 

2c =15 c.u. 

Each component has a non-random time reserve (

( ) 1( )i iR t t h  ,
1 2 3h h h h   ), which varies from 0 

to 0.7 hours in 0.1 increments. The corresponding values 

of 
1 2 3( , , )Т h h h

, 
1 2 3( , , )Т h h h

, 
1 2 3( , , )aК h h h , 

1 2 3( , , )С h h h , 
1 2 3( , , )S h h h  of the system for the specified 

distribution were calculated. The results are presented in 

Table 1. 

Table 1. The influence of the time reserve value on the system 

reliability and efficiency characteristics. 

,h  
h 

,Т  
h

 
,Т  

h
 aК  

C,  

c.u./h 

*10-3  

S, 

c.u./h 

0 0.2632 316.51 0.99917 12.47 9.9792 

0.1 0.2297 388.01 0.99941 8.882 9.9852 

0.2 0.1982 499.30 0.9996 5.953 9.9901 

0.3 0.1712 693.22 0.99975 3.705 9.9938 

0.4 0.1499 1.06*103 0.99986 2.122 9.9965 

0.5 0.1336 1.798*103 0.99993 1.114 9.9981 

0.6 0.1211 3.384*103 0.99996 0.537 9.9991 

0.7 0.1115 7.023*103 0.99998 0.238 9.9996 

Analysis of the data in the table shows the significant 

effect of the time reserve on reliability and efficiency 

characteristics.  

These formulas can be used to analyse the reliability 

of multi-component systems "gas pipeline - underground 

gas storage - consumer"; oil pipeline with tank farms (for 

storing intermediate oil reserves); electric power 

systems, where the time reserve for the component is 

ensured by the presence of an energy storage device. 

 

 

Conclusion 

In this paper, a semi-Markov model of a multi-

component system with a component-wise random 

instantly replenished time reserve is constructed. The 

analysis of the influence of the amount of time reserve 

on the obtained reliability and efficiency characteristics is 

carried out. 

In the future, it is planned to build hidden semi-

Markov models of multi-component systems with an 

element-wise time reserve for analysing the functioning 

of energy systems. 

The results of this work can be used to build semi-

Markov models of systems with various types and 

strategies for using the time reserve, engineering 

calculations and solving optimization problems 

associated with the use of the time reserve. 
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the Minobrnauki of Russia (No. 1.10513.2018/11.12), with 

financial support by RFBR (project No. 19-01-00704a). 
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