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Abstract. The paper presents the results of mathematical simulation of the characteristics of a vane 
diffuser of a centrifugal compressor intermediate stage, such as the loss coefficient and the deviation angle 
versus the outlet vane angle of the diffuser. The simulation of these characteristics was made on the basis 
of processing the results of studies performed by the Research Laboratory "Gas Dynamics of 
Turbomachines" of Peter the Great St.Petersburg Polytechnic University at the model characteristics of 
vane diffusers. Given the almost complete absence of recommendations in the literature, the paper 
describes the technology for constructing neural network models, which includes preparing a sample of 
input data and determining the optimal structure of the neural network. Based on the obtained 
mathematical models, a computational experiment was carried out in order to determine the influence of 
the main geometric and gas-dynamic parameters on the efficiency of vane diffusers. The results of the 
computational experiment on neural models of the efficiency of a vane diffuser are analyzed according to 
the existing ideas about the physics of the processes of energy conversion in a vane diffuser. 

1 Introduction 
A small number of desired geometrical dimensions and a 
relatively simple design of the vane diffuser (VD) 
slightly reduce the problems of optimal design, because 
the main influence on the losses in the diffuser is 
provided by the impeller. The spatial complex structure 
of the viscous compressible flow behind the impeller 
creates a complex flow structure in the diffuser itself. 
Previously absent methods for calculating a viscous 
compressible flow left researchers with only one way out 
which were experimental studies. In [1 - 12], the results 
of experimental and theoretical studies of vane diffusers 
were analyzed and, based on their generalization, a 
number of recommendations for optimal design were 
given: the optimal nature of the velocity distribution 
along the pressure and suction sides of vanes were 
suggested; the influence of various laws of load 
distribution over the vane on the efficiency of diffusers 
was analyzed; some estimates of changes in the 
minimum values of the loss coefficients for various 
lattice densities were given; some analytical 
dependences were given for choosing the number of 
vanes according to the optimal solidity and to the 
average cone angle of the diffuser; the dependences of 
the loss and recovery coefficients on the solidity of the 
gratings at the optimum mode and the relative change in 

the loss coefficient on the incidence angle were obtained; 
noise characteristics were determined, etc. But the 
results of these and of a number of other works related, 
as a rule, to a narrow spectrum of geometric and gas-
dynamic characteristics of vane diffusers. Recently, a 
number of computational software systems have 
appeared that allow the calculation of a viscous 
compressible three-dimensional flow in the flow part of 
a centrifugal compressor stage, which made it possible to 
transfer a substantial part of the research to a virtual 
computer experiment [1, 13]. Such systematic and 
numerous studies of various elements and stages of a 
centrifugal compressor as a whole were carried out at the 
Research Laboratory Gas Dynamics of Turbomachines 
at the St. Petersburg Polytechnic University, under the 
guidance of Professor Yu.B. Galerkin. The Universal 
modeling method [14-20], developed in this laboratory 
and repeatedly tested in theoretical studies of the 
working processes of turbochargers and in the practical 
design of new machines made it possible to obtain an 
extensive database of energy characteristics of 
centrifugal compressors stages and of their elements. 
The created Universal Modeling Method and the 
corresponding software package suggest the use of a 
designer with large computing power and significant 
time spent in virtual research or finding the optimal 
design using variant calculations. These difficulties can 
be circumvented using the results of studies of the Gas 
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Dynamics of Turbomachines laboratory for constructing 
mathematical models suitable for simple practical use in 
design or in carrying out research of compressors. The 
present work is devoted to the method of constructing 
such models using the sample of a vane diffuser and 
discussion of the simulation results. 

2 Methods 
In order to achieve the aim of work, the most modern 
method of processing the input data, which is the neural 
modeling, was used. The main task is the methodology 
of training a neural network (NS) on a sample of input 
data. As separate stages of training, it is envisaged to 
provide analysis and selection of types of neural 
networks and activation functions; creation of several 
test neural networks of different architecture; analysis of 
main coefficients of input neurons; perturbation of input 
parameter values and analysis of the response of the 
neural network to these perturbations; sequential 
exclusion of input neurons and observation of a network 
generalization error; testing trial neural networks of 
different architectures; the choice of the ultimate neural 
network architecture. Also, one of the essential tasks for 
achieving the aim of the work is to develop methods and 
to implement them by preliminary preparing a sample of 
initial data for training a neural model of the energy 
characteristics of a vane diffuser, which includes 
determining the vector of output and input parameters of 
the model; identification of conflicting examples; 
determination of the required minimum sample size to 
create a neural network; sample conversion in order to 
improve the quality of training of neural networks with 
insufficient sample size (multiple cross-validation, 
multiple sampling and changing the order of training 
examples); identification of outliers in the input data; 
excluding outliers from the training set; rationing of 
input data; adding noise to training samples. 

2.1 The aim of the work 

The aim of the work is to build mathematical models of 
the gas-dynamic characteristics of the vane diffuser at 
the intermediate stage of a centrifugal compressor, which 
allow performing a computational study and searching 
for the optimal design of the VD for the given 
parameters in the process of developing new designs of 
centrifugal compressors. 

2.2 Object under study 

Vane diffusers, to a large extent, determine the overall 
dimensions and energy characteristics of the centrifugal 
compressor as a whole [1 - 7]. The use of vane diffusers 
in centrifugal compressors allows to obtain a greater 
deceleration of the gas flow and, accordingly, to reduce 
losses in the rotary elbow and the return guide apparatus. 
The coordination of the optimal modes of the impeller 
and of the vane diffuser is achieved due to the special 
installation of the diffuser vanes, which allows to 
increase the efficiency by 2-4% in the design mode with 

a certain narrowing of the stage operation zone. Along 
with this, we know designs of stages with vaneless 
diffusers providing high efficiency in a wide area of 
work. On the other hand, the use of vane diffusers in 
low-flow stages did not lead to a significant narrowing 
of the stage operation zone. Thus, the choice of the type 
of diffuser and the determination of its geometric 
parameters requires special analysis. 

The main structural elements of the vane diffuser are 
shown in Figure 1. As a rule, the height of the vanes is 
taken to be constant along the length of the diffuser b3 = 
b4 (where b is vane height, 3, 4 - indices of control 
sections), in order to simplify the design of the diffuser; 
the midline of the vane profile is made along an arc of a 
circle with radius Rv from the radius of the centers Rc (v 
– value for diffuser vane):

Rv=0,5 (r4
2 –r3

2 )/(r4 cos αv4  - r3 cos αv3 ) (1) 
Rc

2 = Rv
2 + r4

2 - 2 Rvr4cosαv4 . (2) 

In this case, the task of determining the optimal 
design of the vane diffuser is to search for the main 
structural dimensions: the radii of the input r3 and of the 
outlet r4 from the diffuser, the inlet vane angles αv3 and 
at the output αv4, the number of vanes z and the height of 
the vanes b. 

Figure 1 shows a diagram of the geometry of the 
investigated vane diffuser. 

Fig.1. Scheme of the geometry of the vane diffuser of a 
centrifugal compressor. 

3 Results 

3.1 Processing a sample of initial data for 
training a neural network of the 
characteristics of a vane diffuser 

Neural networks, as a universal approximator, allow us 
building generalized models based on a large data 
amount. The main provisions, features and advantages of 
the neural network approach when modeling the 
characteristics of centrifugal compressors are given in 
[21]. In a simplified form, it can be shown that the neural 
network performs the following approximation: 

Y=f(X),     (3) 
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where X is the input vector, Y is the output vector, f is 
the transformation performed by the neural network. 

Practice and analysis of the use of neural networks 
for simulation the characteristics of centrifugal 
compressors allow us to conclude that the analysis, 
selection and preliminary preparation and processing of 
input data (formation of a training sample) before 
training neural networks can significantly improve the 
accuracy and reliability of models. 

In the general case, for processing a sample of input 
data, we can use the following sequence of stages, which 
was formed empirically by the authors of this paper, 
using their own experience in creating neural models 
[21-24]: 

1. Selection of input parameters (logic and analysis
of the subject area; analysis of the main coefficients of 
the input neurons; perturbation of the values of the input 
parameters and analysis of the response of the network 
to these perturbations; sequential exclusion of input 
neurons and observation of the network generalization 
error). 

2. Identification of conflicting samples.
3. Determination of the required number of samples.
4. Improving the quality of training of neural

networks with insufficient sample size (multiple cross-
validation, multiple sample repetition and changing the 
order of the training samples). 

5. Identification of outliers.
6. Normalization of data.
7. Adding noise to training samples.
8. Selection of types of neural networks and of

activation functions. 
9. Network decomposition according to the number

of output neurons. 
Let us dwell in more detail on the points completed 

in the framework of this work. 

3.2 Sampling of initial data and determination of 
the vector of output and input parameters of 
the model 

The initial total amount of the input data sample 
describing the VD geometry and gas-dynamic 
parameters was of 603 samples. 

Using the research results provided by the research 
laboratory "Gas Dynamics of Turbomachines" of the St. 
Petersburg Polytechnic University, the following 
parameters were accepted as input ones (arguments of 
the neural model): 

b3 /D3 is relative width of the diffuser (only the input 
data of diffusers of constant width were used); l/t is 
cascade solidity (where l – vane length, t – vane 
installation stage); αv3 is inlet vane angle of VD; Δαv is 
vane blade-camber angle; D4/D3 is relative vaneless 
diffuser exit diameter; α4 is outlet VD flow angle; i3 is 
incidence angle. 

Neural models were built for two parameters: 
ζ is VD loss coefficient; 
Δα4 is deviation angle at the VD outlet. 

The ranges of changes in geometric and operational 
parameters in the sample of input data for constructing a 
mathematical model are shown in table 1. 

Table 1. The ranges of input and output parameters in the 
original data sample. 

Param
eter 

b3/
D3 

l/t α
v3

Δ
αv 

D4/
D3 

i3 α4 ζ Δα4 

Minimu
m value 

0.02
27 

1.2
73 

1
5° 

10
° 

1.36
36 

-
8
° 

18.6
51°

0.0
75 

-
1.61
1° 

Maximu
m value 

0.07
27 

2.4
49 

2
0° 

30
° 

1.36
36 

6
° 

38.2
15°

0.5
81 

22.5
64°

In order to analyze the sample, a frequency analysis 
was performed for each of the parameters. In an ideal 
sample of input data, the input parameters should be 
evenly distributed in the studied range of their changes 
with high density. In reality, due to the reduction in the 
cost of the experiment, this, as a rule, cannot be 
achieved. Frequency analysis of the sample allows us to 
clearly see in the diagrams which ranges of the changed 
or other input parameters are covered most fully by the 
values, and which areas in the sample were represented 
to a lesser extent. This analysis allows us to describe the 
domain of definition of the desired models. 

The outlet flow angle α4 is excluded as an 
insignificant argument in the model, because actually 
duplicated by the deviation angle at the VD outlet versus 
the outlet vane angle of the diffuser Δα4 . The relative 
diameter of the exit from VD4 D4/D3 is excluded from 
the list of arguments, because the input data sample for 
modeling was obtained only for vane diffusers of the 
same length D4/D3 = 1.3636. 

Thus, in a generalized form, the desired models were 
presented as follows: 

ζ = f (b3/D3; αv3; Δαv; l/t; i3);   (4) 

Δα4 = f (b3/D3; αv3; Δαv; l/t; i3). (5) 

3.3 Identifying conflicting samples 

After identifying and eliminating insignificant 
parameters from the training set, the quality and 
accuracy of the neural network model, as a rule, 
improves, due to a decrease in its dimension and, 
therefore, simplification of the mathematical 
dependence. It should be noted here that an excessive 
decrease in the number of input parameters and 
simplification of the appearance of a neural network may 
interfere with revealing patterns in a particular problem. 
It can also lead to the emergence of conflicting samples. 

Samples are called conflicting if, for identical input 
vectors, they have different output ones. The presence of 
conflicting samples in the training set may appear due to 
random errors or in the case of incorrect statement of the 
problem. The search for such conflicting samples can be 
carried out using special algorithms that search for 
matching training samples [24, 31] or by carefully 
looking at the sample in search of repeated input vectors. 

When processing the input sample, several 
conflicting samples were found, two of them are shown 
in Table 2 as an illustration: 
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Table 2. Conflicting samples found in the described sample. 
Parameter b3/D3 l/t αv3 Δαv i3 ζ Δα4 

Sample 1 0.0545 1.379 20° 15° -2° 0.075 - 

Sample 1’ 0.0545 1.379 20° 15° -2° 0.076 - 

Sample 2 0.0227 1.861 20° 20° 4° - 12.73°

Sample 2’ 0.0227 1.861 20° 20° 4° - 12.47°

All identified conflicting samples were removed 
from the training set. Thus, for further work, 591 training 
samples were used. 

3.4 Determination of the required number of 
samples for creating a neural network 

For successful simulation using neural networks, it is 
important to dispose of the required number of training 
samples. In part, the concept “the more the better” is 
true, but it is important to remember that the number of 
samples affects the training time and an excessive 
number of samples will lead to a large expenditure of 
computer time for training the neural network. In [25], a 
formula is given with which you can determine the 
minimum required amount of training samples: 

Q=7*Nx+15,     (6) 
where Nx is number of input parameters of the neural 

network model; Q is number of training set samples. 
The number of input parameters in neural models of 

the VD loss coefficient ζ and the deviation angle Δα4 
under the study are the same and equal to 5. Then, 
provided the samples are distributed as evenly as 
possible over the entire sampling range, the minimum 
training sample size should be of 50. The sample size in 
591 samples repeatedly covers this value. It should be 
specially noted here that this quantitative well-being 
does not provide sufficient grounds for reflecting the 
desired physical laws in the model, because the second 
defining moment in the process of setting the problem is 
the uniformity and density of distribution of the model 
arguments in the input data sample. 

3.5 Sampling transformations to improve the 
quality of training of neural networks with 
insufficient sample size 

In practice, it is often not possible to collect a sufficient 
amount of data distributed uniformly with a high density 
for training, and there is a need for more rigorous testing 
of the neural network or for certain manipulations with 
the sample. So, in the problem under consideration, with 
a relatively favorable distribution density of input 
parameters in the domain of definition of the desired 
function, only two values of the vane angles at the 
entrance to the VD are used in order to construct the 
model. 

As one of the possible ways, you can resort to 
multiple cross-validation (multifold cross-validation). 
Also, the problem of a small sample can be dealt with by 
repeating the original sample supplied to the input of a 
neural network [25, 26]. In this case, the method of 

changing the sequence of training samples was applied. 
This gives the learning course a more stochastic 
character and helps to reduce the likelihood of getting 
into local extremes. 

The sample was shuffled several times in a random 
order using the RAND function integrated in the Excel 
MSOffice spreadsheet editor in order to eliminate the 
influence of the order of input of samples during 
training. 

3.6 Identification and exclusion of outliers from 
the training set 

For outliers in the input sample, parameter values are 
taken that, due to random reasons or due to a simple 
human factor, significantly differ in their values from 
other similar information. Emissions may appear during 
the data collection (a comma is absent when entering the 
data into the computer and as a result an error in the 
value arises by an order of magnitude) or may be due to 
other reasons (errors of measuring instruments, 
malfunctions of the equipment, etc.). Obviously, this 
does not reflect the physical laws of the influence of 
parameters in the described subject area. 

The presence of outliers adversely affects the 
accuracy of the created models, as in the case of 
conflicting samples, the error inherent in the sample 
before the training stage is difficult to correct by 
changing the training algorithms. In the simplest cases, 
outliers can be detected by careful viewing of the 
sample, in more complex multi-parameter dependencies 
and large amounts of information for searching for 
outliers, we can resort to using simple neural networks 
with a minimum number of neurons in the hidden layer. 
For example, the perceptron is poorly trained in samples 
with outliers and, by alternately removing samples and 
comparing the resulting errors, we can find out those 
samples that are outliers. In the case of a large sample 
size, this is difficult to implement; therefore, they resort 
to various emission search algorithms [27]. 

In the course of working with the input data, several 
samples with outliers were found. In order not to reduce 
the sample size, the detected outliers were corrected in 
accordance with the general type of dependence. 

Fig.2. An example of the deviation angle versus the incidence 
angle with ejection and after correction. 

3.7 Rationing of input data 

It is desirable to normalize data prepared for neural 
network processing by aligning the range of variation of 
the values of the quantities, limiting them to the interval 
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(for example, [0,1]). The normalization procedure should 
be subjected to both input and output parameters. The 
normalization process is described in detail in [25, 34-
36]. 

In this case, data normalization was especially 
relevant due to the physical nature of data and was 
carried out for the range [0,1], where 0 corresponds to 
the minimum and 1 to the maximum value of both the 
input and the output parameters of the neural network. 

After completing all the procedures above for 
preparing a sample of input data for training a neural 
network, 591 training samples remained for building the 
model. It was decided not to introduce noise so as not to 
distort the simulation results, since the sample size 
practically coincides with the minimum threshold data 
volume for introducing noise into the training sample. 

Of the total sample size in 591 training samples, 60 
samples (10%) were allocated to form a test set that was 
not involved in the training of the desired models. The 
test set was used only after training in order to determine 
the error of the models. 

3.8 Neural network training 

Depending on which task you need to solve using neural 
network modeling, you need to select the appropriate 
type of neural network. So for approximation of 
functions, perceptron-type neural networks are well 
suited, Kohonen networks are often used for clustering 
tasks, and convolutional neural networks are often used 
for image recognition and classification [29-31]. 

In this work, in order to create models, two-layer 
perceptrons were chosen, as the form of neural networks 
that has proven itself in the approximation of 
multidimensional functions. 

The experience of neural network modeling showed 
that asymmetric, differentiable functions (for example, 
such as logical sigmoid, hyperbolic tangent) are 
efficiently used as activation functions of neurons [29, 
30]. 

For the neural network model of the loss coefficient 
of the vane diffuser ζ, the logical sigmoid in both layers 
were taken as activation functions. In order to simulate 
the deviation angle Δα4, the logical sigmoid was used in 
the first layer and the linear activation function in the 
second one. 

For complex neural network models, where the value 
of several output parameters is approximated, it is 
convenient to use network decomposition according to 
the number of output neurons. So, for example, instead 
of a neural network with 5 inputs and 3 outputs, create 3 
neural networks with 5 inputs and 1 output. The use of 
this technique allows to reduce the overall error in 
simulation the output parameters. Each neuron will 
adjust its weight in accordance with the reduction of 
error for simulation of one output parameter, and not 
adjust to several parameters of the output vector at once. 
The structure of each individual network should be 
optimized separately, taking into account the 
minimization of error for each neural network. 

That is why in the modeling process in this work two 
models were constructed – ζ (VD loss coefficient) and 
Δα4 (deviation angle). For each of them, in order to 
better approximate its dependence in neural networks, 
different types of activation functions were used in the 
output models layers. 

The selection of suitable network architecture is 
carried out empirically. Despite the number of existing 
recommendations on network architecture for solving the 
problem of approximating dependencies, it is necessary 
to independently select the architectures that are most 
suitable for each specific task and the source data used. 

In order to select the learning function, two-layer 
neural networks with 25 neurons in the first (hidden) 
layer were created. The simulation accuracy was 
checked when changing the training functions as 
follows: with the BFGS quasi-Newtonian method, with 
the Levenberg-Marquardt optimization method and 
Levenberg-Marquardt optimization with Bayesian 
regularization. In the first layer, an activation function, a 
logical sigmoid, was used. In the second layer, neural 
networks with a logical sigmoid and a linear activation 
function for each learning function were used. 

In accordance with the minimum error, a training 
function with the Levenberg-Marquardt optimization 
method with Bayesian regularization was chosen. 

Next, a computational experiment was conducted to 
select the network architecture for the selected learning 
function. Two-layer models were constructed with the 
number of neurons in the hidden layer 10, 15, 20, 25, 30 
and one neuron in the output layer. As well as three-
layer ones with the number of neurons in the first 
(hidden) layer 10, 15, 20, 25, 30 and in the second 
(hidden) layer 10, 15, 20, 25, 30 for each variant of the 
number of neurons in the first layer. There is one neuron 
in the third output layer. As activation function for all 
layers a logical sigmoid was used. 

It also follows from the Arnold – Kolmogorov – 
Hecht-Nielsen theorems (Arnold-Kolmogorov-Hecht-
Nielsen) [25] that for construction of a neural network 
model of an arbitrarily complex function, it suffices to 
use a perceptron with one hidden layer of sigmoid 
neurons, the number of which is determined by the ratio: 

( )y
w y x y y

2 x

N Q QN N 1 N N 1 N
1 log ( Q ) N

 
≤ ≤ + + + + +  

, (7) 

where Nx is number of neurons in the input layer 
(number of parameters); Ny is number of neurons in the 
output layer (the number of simulated quantities); Q is 
number of elements in the set of training samples; Nw is 
required number of synaptic connections. 

In accordance with the initial data for modeling and 
the range of numerical and synaptic connections for the 
models of the loss coefficient ζ and for the model of the 
deviation angle, Δα4 is in the range from 58 to 797. This 
allows us to determine the required number of neurons in 
hidden layers, so for a two-layer perceptron the number 
of hidden layer neurons will be [25]: 

w

x y

N
N

N N
=

+
(8) 
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For the problem under consideration, the calculation 
according to the formulas above shows that the optimal 
number of neurons in the hidden layer for the two-layer 
perceptron of the model of loss coefficient ζ and 
deviation angle Δα4 lies in the range from 8 to 114 
neurons (8 ≤ N ≤ 114). 

A rigorous theory of choosing the optimal number of 
hidden layers and neurons in hidden layers does not 
currently exist. In the current practice of neural network 
modeling, perceptrons with one or two hidden layers are 
most often used, and the number of neurons in hidden 
layers usually ranges from Nx/2 to 3Nx. A computational 
experiment on neural networks in the process of 
constructing models showed that the minimum error was 
obtained for a network with 30 neurons in a hidden 
layer, both for models of the loss coefficient ζ and the 
flow deviation angle Δα4. This value is consistent with 
the recommendations of theoretical studies. 

The smallest error in the loss coefficient ζ was 
obtained for a neural network with the following 
architecture: two-layer, the number of neurons in the 
hidden layer is of 30, logical sigmoid activation 
functions for all layers, learning function with 
optimization according to the Levenberg-Marquardt 
algorithm with Bayesian regularization. The average 
error of the neural model of the loss coefficient ζ was of 
5.5%. 

The smallest error in the deviation angle Δα4 was 
observed in a neural network with the following 
architecture: two-layer, the number of neurons in the 
hidden layer is of 30, logical sigmoid activation 
functions for the first layer, linear activation function for 
the second layer, learning function with optimization 
according to the Levenberg-Marquardt algorithm with 
Bayesian regularization. The average error of the neural 
model of the deviation angle Δα4 was of 6.4%. 

Examples of comparing simulation results for neural 
models with the input data are shown in Figures 3 and 4. 

a) 

 
b) 

Fig.3. Comparison of simulation results ζ for VD: a) 
b3/D3=0.0545; l/t=1,861; αv3=15°; Δαv=10°; 
b) b3/D3=0.0545; l/t=1.763;αv3=15°; Δαv=30°.

a) 

b) 
Fig.4. Comparison of simulation results Δα4 for VD: a) 
b3/D3=0.0727; l/t=1,909; αv3=20°; Δαv=15°; 
b) b3/D3=0.0409; l/t=1.909; αv3=20°; Δαv=15°.

The results of constructing neural models of the loss 
coefficient and the deviation angle versus the outlet vane 
angle of the diffuser show that the models describe well 
the nature of the change in the studied parameters in the 
entire domain of definition of models with an accuracy 
that is satisfactory for the practical use of models. 

3.9 Verification of neural network models of 
loss coefficient and lag angle 

In order to verify the conformity of the current 
understanding of gas-dynamic processes of energy 
conversion in compressor diffusers with the results of 
calculations on the obtained models, a computational 
experiment was carried out to study the laws governing 
the influence of the VD loss coefficient ζ and the 
deviation angle versus the outlet vane angle of the 
diffuser Δα4: 

- the incidence angle i3 for various values of the 
relative width b3/D3 , the cascade solidity l/t , the inlet 
vane angles αv3, the vane blade-camber angle Δαv; 

- the cascade solidity l/t at various values of the 
relative width b3/D3, the inlet vane angles αv3, the angle 
of curvature of the vane profile Δαv and incidence angle 
i3; 

- the relative width of the diffuser b3/D3 and at 
various values of the cascade solidity l/t, the inlet vane 
angles αv3, the vane blade-camber angle Δαv, the 
incidence angle i3; 

- the vane blade-camber angle Δαv at various values 
of the relative width b3/D3, the cascade solidity l/t, the 
inlet vane angles αv3 and the incidence angle i3. 

When conducting a computational experiment, the 
ranges of deviation of the listed parameters corresponded 
to the domain of definition of neural network models 
shown in table 1. 

Typical examples of the results of a computational 
experiment are shown in Figures 5–13.  
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Fig.5. Dependence of the flow delay angle Δα4 and the loss coefficient ζ 
on the angle of attack i3 for a BD with the following parameters:  
а) b3/D3=0.0309; l/t=1.861; αv3=15°; Δαv=10°; D4/D3=1.3636;  
b) b3/D3=0.0409; l/t=2.3; αv3=15°; Δαv=15°; D4/D3=1.3636.

Fig.6. Dependence of the loss coefficient ζ on the lattice density l/t for a BD with the following parameters: 
b3/D3=0.0545; αv3=15°; Δαv=10°; i3=-8°; D4/D3=1.3636  

Fig.7. Dependences of the flow delay angle Δα4 and the loss coefficient ζ on the lattice density l/t  
for a BD with the following parameters: b3/D3=0.0309; αv3=20°; Δαv=20°; D4/D3=1.3636; i3=-4°. 

Fig.8. Dependences of the flow delay angle Δα4 and the loss coefficient ζ on the lattice density l/t  
for a BD with the following parameters: b3/D3=0.0409; αv3=20°; Δαv=15°; D4/D3=1.3636; i3=-4°. 

Fig.9. Influence of diffuser width b3/D3 on the dependence of the loss coefficient ζ  
on the angle of attack i3 for a BD with the following parameters: αv3=15°; Δαv=10°; D4/D3=1.3636; l/t=2.291. 
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Fig.10. Influence of the bent angle of the diffuser blade Δαv on the dependence of the loss coefficient ζ  
on the angle of attack i3 for a BD with the following parameters: b3/D3=0.0309; αv3=20°; D4/D3=1.3636; l/t=2.449. 

 
                                                    a)                                                                                   b) 

Fig.11. Influence of the bent angle of the diffuser blade Δαv on the dependence of the loss coefficient ζ  
on the angle of attack i3 for a BD with parameters:  
a) b3/D3=0.0409; αv3=20°; D4/D3=1.3636; l/t=1.92;  
b) b3/D3=0.0727; αv3=20°; D4/D3=1.3636; l/t=1.763. 

 
Fig.12. Influence of the bent angle of the diffuser blade Δαv on the dependence of the flow delay angle Δα4  
on the angle of attack i3 for a BD with the following parameters: b3/D3=0.0227; αv3=15°; D4/D3=1.3636; l/t=1.591 
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                                          a)                                                                                       b)   

Fig.13. Influence of the bent angle of the diffuser blade Δαv on the dependence of the flow delay angle Δα4  
on the angle of attack i3 for an BD with the following parameters:  
a) b3/D3=0.0409; αv3=15°; D4/D3=1.3636; l/t=1.92;  
b) b3/D3=0.0727; αv3=20°; D4/D3=1.3636; l/t=1.763. 

 
Numerous results obtained during a computational 

experiment on neural models require special reflection 
and careful analysis. Here we only note that the results 
of a virtual experiment do not contradict the existing 
knowledge about the processes of energy conversion and 
with sufficient accuracy for engineering calculations 
coincide with the known quantitative data and 
recommendations for the design of vane diffusers. 

4 Discussion 
A number of technological conclusions can be noted that 
were practically obtained in the search for the optimal 
structure of neural networks. Obviously, these 
conclusions can be useful to readers only as conclusions 
from the results of the above study and cannot be in the 
nature of comprehensive recommendations: 

1.We used as the resulting neural networks with 
fewer neurons in the hidden layer, which better adapt to 
the general form of the dependence and respond less to 
data noise and random outliers that were not detected at 
the preliminary stage of data processing. 

2. The choice in favor of two-layer networks was 
made due to the insignificant difference in the errors of 
the two-layer and three-layer neural networks, but it is 
obviously more economical from the point of view of 
computing power for structures on two perceptron layers 
when using the obtained models to carry out research 
work or construct optimal VD designs. 

3. The decrease in the number of neurons in the 
hidden layer significantly reduces the accuracy of the 
simulation. So, for the loss coefficient model, the ζ 
neural network with a similar final architecture: two-
layer, logical sigmoid activation functions for all layers, 
a learning function with optimization according to the 
Levenberg-Marquardt algorithm, but with the number of 
neurons in the hidden layer 10, gave an average error of 
about 9%. A similar result was observed for the model of 
the deviation angle Δα4 (two-layer, the number of 
neurons in the hidden layer 10, the activation functions 
of the logical sigmoid for the first layer, the linear 
activation function for the second layer, the learning 
function with optimization according to the Levenberg-

Marquardt algorithm) with the number of neurons in the 
hidden layer of 10, the average error was about 12%. 

4. A check of the influence of normalization was 
carried out when comparing a neural network trained on 
normalized data and a neural network trained on 
standardized data, showed a significant increase in 
accuracy. After normalization, the error decreases on 
average by 3% compared with the same model, which 
was only trained on abnormal data. Similar results were 
obtained in [24]. 

5. Pre-processing of a sample of input data is a 
necessary stage for training a neural network, as it can 
significantly reduce modeling errors. 

The developed mathematical model can be applied in 
calculation programs of gas-dynamic characteristics of 
centrifugal compressors and compressor stages. The 
authors have a positive experience of cooperation with 
the developers of the universal modeling method 
programs [37, 38]. 

It should be specially emphasized that the time spent 
on research on neural models is much less than when 
using the Universal Modeling Method and is 
incomparably less than the cost of performing a full-
scale experiment. 

The results of a computational experiment allow us 
to conclude about the possible use of the obtained 
models in practical applications, both for scientific 
research and in the development of new, more advanced 
designs of centrifugal compressors with vane diffusers in 
the stage. 

5 Conclusions 
This paper summarizes the experience gained in pre-
processing data for training neural networks in 
constructing mathematical models of the energy 
characteristics of vane diffusers of centrifugal 
compressors and offers recommendations for improving 
the accuracy of neural network modeling. The 
recommendations are framed in a single algorithm, 
consisting of a sequence of stages of processing the 
initial sample. The suggested algorithm was tested by 
simulation of the energy characteristics of vane diffusers 
of the intermediate stage of a centrifugal compressor. 
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The obtained simulation results and a significant 
reduction in the errors of neural network models show 
the importance and need for preliminary processing of 
the training sample. 

A neural network simulation of the dependences of 
the deviation angle and the vane diffuser loss coefficient 
on the incidence angle was obtained with an average 
error of about 6%. 

A computational experiment on the basis of the 
obtained models allows us to draw conclusions about a 
satisfactory agreement between the obtained results and 
the existing ideas about the gas-dynamic processes of 
energy conversion in a vane diffuser. This gives 
researchers and designers a new tool for the study of 
vane diffusers and the search for new, more advanced 
designs of the centrifugal compressor stage. 
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