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Abstract. The robustness of power grids plays a very important role in reality. The blackout of power system 
can make a serious damage for the normal running of whole city or whole area and the loss caused by it is 
inestimable. This paper aims to propose a simulation method to evaluate the robustness of a power grid and 
some effective strategies to improve the robustness. Complex network keeps the most important characters 
of a power grid, and makes the simulation process concise. This paper studies how characters influence the 
robustness and proposes some conclusions and suggestions for enhancing effectively the robustness by 
changing these characters. In this paper, for the robustness of a network, it can be found that some parameters 
like tolerance coefficient are more dominant than others. Some parameters interact obviously, like capacity 
addition ratio and addition station ratio. Improper capacity addition strategy may have a negative effect on 
the network. And load node with big degree and small flow is likely an excellent choice to be added capacity 
by distributed photovoltaic power station. The simulation method and improvement strategy can be used in 
the engineering of power grid and establishment of distributed photovoltaic power system. 

1 Introduction 
Power grids plays a vital role for development and 
operation of cities and also people’s daily life. Large 
blackouts of power grids can make huge influences and 
economic losses directly and indirectly. For example, 
Fig.1 shows the August 2003 blackout in Northeastern 
America disconnected 50 million people and 62 GW to an 
area spanning eight states and two provinces. The total 
economic losses of this blackout are estimated at about 
25-30 billion dollars. The planning and management of 
power grids should draw much attention among scientists 
and engineers. 

 
Fig. 1. The great blackout which struck the northeastern United 
States and Canada on the afternoon of 14 August 2003 and 
lasted well into the next day. 

With the development of complex network theory and 
its application in recent years, there are many static 
models of complex network established according to their 
own characteristics in various fields. For example, traffic 
flow is introduced into traffic field, and interaction 
intensity in sociology field. It can be seen that complex 
network shows remarkable advantages in complex system 
research. 

Electric power network is a network with a large 
number of nodes and complex connections between them. 
It has the general characteristics of complex networks, 
including the large-scale network and the statistical 
performance of nodes, the complexity of dynamic 
performance of nodes, the sparseness of network 
connections, the complexity of connection structure and 
the complexity of network space-time evolution. As a 
typical large complex network, with the increasing 
interconnection scale, the power grid shows more and 
more complex phenomena, such as frequent large power 
grid cascading blackouts [1-2] and so on. These accidents 
are often caused by the failure of one component [3] and 
then gradually expand, and finally the system collapses 
rapidly. These system components often appear in 
overload lines, power flow concentration areas, or load-
intensive areas of the system [4]. Distributed photovoltaic 
power stations are helpful for sharing the load. Distributed 
photovoltaic power stations usually refer to power 
generation systems with small installed capacity and 
located near users using decentralized resources, which 
have the characteristics of low energy consumption and 
low cost [5]. This means distributed photovoltaic power 
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stations can be set near the important nodes in order to 
share the load and reduce the risk of cascading failure. For 
purpose of setting distributed photovoltaic power stations, 
it’s important to find the most important node in the power 
grid. Therefore, how to evaluate and rank the importance 
of nodes and how to simulate the cascading failure of the 
power grid is of great significance to improve the stability 
and security of the system and reduce the probability of 
major blackouts. 

This paper models the network for power grid and 
proposes a simulation method to evaluate the robustness 
of a network based on different problems that the power 
gird will meet in reality. Then the robustness of a network 
is discussed by changing the parameters and capacity 
addition. The importance of each parameter is measured 
for the robustness of a network and some suggestions and 
strategies are proposed to enhance the robustness 
effectively. The study provides some good strategies for 
setting distributed photovoltaic power stations and a 
simulation method to measure the improvement of 
robustness brought by them. 

In the next, recent research and related works are 
introduced in section 2; evaluation and simulation 
methods are proposed in section 3; simulation results and 
discussion in section 4; and a conclusion in section 5. 

2 Recent research 
Recently a great deal of attention has been devoted to the 
analysis of the importance of nodes in the power grid. 
Many classical node importance assessment models have 
been used in power grid analysis, such as PageRank 
algorithm [6], node importance evaluation matrix [7], 
degree centrality, betweenness centrality, closeness 
centrality, eigenvector centrality [8-11] and so on. 
Researchers basically modeled based on the structure of 
the network [12]. However, the classical models cannot 
accurately represent the electrical characteristics of the 
power grid. To take such characteristics into consideration, 
many improved models have been developed [13-14]. For 
instance, the method based on power tracing and link 
analysis has been followed by researchers [15-17]. Based 
on the results of power flow tracing, the research defined 
new indexes for evaluating the link strength and load 
importance of system nodes. Referring to PageRank 
algorithm based on link analysis, researchers presented 
the evaluation model of node importance based on 
weighted digraph link strength of power grid [15,18]. A 
method for identifying key nodes of power grid based on 
improved node importance contribution matrix is also 
proposed [19]. In June 2019, an evaluation method based 
on interdependent network theory is presented [20]. The 
single side network is extracted from the power physics-
information network, and the subnet models are 
established with the link-used rate and power line 
impedance value as the edge weight parameter. Research 
[21] verifies the feasibility of node shrinkage method for 
evaluating the importance of network nodes.  

Besides the node importance evaluation model, the 
cascade failure simulation also plays an important role in 
the power grid analysis [22]. In 1987, Bak, Tang and 

Wiesenfeld presented the sand pile model by studying 
self-organizing critical state [23]. K-core model has also 
been employed for understanding cascade failure and 
systems collapse [24]. In order to describe the transition 
of power grid from initial state to self-organized critical 
state, Dobson, et al. proposed OPA model [25]. This 
model is used to model and analyze the changes that may 
occur during the evolution of power grid state, such as the 
increase of user load, the change of power grid capacity, 
the repair of faults and the control of power distribution 
when faults occur. According to the change of probability 
distribution of successive fault frequency and fault scale 
in the process of load increase of power grid, Dobson, et 
al. presented cascade model [26]. CML model is also 
widely used to simulate cascade failure [27-28]. In order 
to improve K-core model, KQ model is proposed and 
applied in the research. This cascading failure model is an 
extension of the k-core cascade, where a node will be 
removed from the network with a probability f if it has 
fewer than ks connections, or it has lost more than a 
fraction 1 − q of its original neighbors [29-30]. 

3 Evaluation method of the robustness 
of a network 

3.1 Architecture of power grid as complex 
network 

For making simulation results pellucid, we simplify the 
model of the power grid as a complex network of high-
voltage transmission lines which connect power stations, 
excluding low-voltage transmission lines and some power 
station’s details. A node can be generator, load or pivot. 
Fig. 2 shows a six nodes power grid network for example. 

 
Fig. 2. A six nodes power grid network, it shows node number, 
connection relation, generated power and load power of nodes 
in the power grid. 

After simplifying the model, a method is proposed to 
infer the transmission relation of network by linear 
programming. Considering the influence of the loss for 
transmission relation and supposing the loss ratio on each 
edge is similar, a generator should have a priority to 
provide energy to nearer load. We define distance between 
node i and j -- Dij as the number of edges in the shortest 
path from i to j, transmission power from generator i to 
load j -- Xij and transmission power between two neighbor 
nodes i and j -- Pij (i and j are connected). The objective 
and constraints of the linear programming problem are 
shown in equation (1). 

max 𝑆 ൌ ෍ ෍ 𝑋௜௝𝐷௜௝௝∈௅௜∈ீ   
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𝑠. 𝑡. ቊ൫∑ 𝑋௜௝௝∈௅ ൯ ൑ 𝑃௜௚, 𝑖 ∈ 𝐺൫∑ 𝑋௜௝௜∈ீ ൯ ൑ 𝑃௝௟, 𝑗 ∈ 𝐿                     (1) 

3.2 Node's characters 

In the study, two characters of nodes in network are 
significant -- degree k and flow S. The definition of degree 
is the same as that in graph theory. Generated power Pg, 
load power Pl, provide value and taken value are also 
useful for the experience and definitions of other 
important parameters. 

(1)Flow S 
The flow Sj is a character of node j for measuring the 

maximum power output capacity, which represents the 
sum of generated power of node j and all power flow in 
node j. 𝑆௝ ൌ 𝑃௝௚ ൅ ∑ 𝑃௜௝௜∈ே                          (2) 

(2) Generated power Pg and provide value 
Generated power Pg is the maximum power generation 

capacity of a normal working node. Provide value means 
the value of power that a generator node provides exactly 
to other load nodes or itself. In the next part, ‘provide’ is 
short for provide value. 

(3) Load power Pl and taken value 
Load power Pl is the maximum load capacity of a 

normal working node. Taken value means the value of 
power that a load node taken exactly from other generator 
nodes or itself. In the next part, ‘taken’ is short for taken 
value. 

3.3 Network's robustness evaluation 

Robustness refers to the ability of tolerating perturbations 
that might affect the system’s functional body. There are 
two types of perturbations in a power grid. The first one 
is one station lose all its functions. The second type is 
cascading failure. Therefore, in this section two method 
of evaluating network’s robustness are proposed: node 
breakdown and cascading failure. 

(1) Node breakdown 
Node breakdown includes two types of attack mode -

- removing the node and all edges link with it; stopping its 
function of generation and load but remaining transmits 
function, which is shown in Fig.3. 

CC is the ratio of actual total power of a network 
against maximum total power of the original network 
before the attack. Bigger CC shows better connectivity of 
a network.CL is the average distance of electric power 
transmitted from generators to loads. And Cg is a 
summary measure of CC and CL. ൝ 𝑋ே ൌ ∑ ∑ 𝑋௜௝௝∈௅௜∈ீ𝐶௅ ൌ ∑ ∑ ௑೔ೕ௑ಿ ൈ 𝐷௜௝௝∈௅௜∈ீ                  (3) 𝐶௚ ൌ 𝐶஼ 𝐶௅⁄                               (4) 

In conclusion, choose one attack mode to attack a node 
each time and get CC and Cg two metrics before and after 
the attack. Then calculate the decline of two metrics 
during the attack. Bigger decline shows bigger 
destructiveness of the attack and weaker robustness of the 
network. 

 

 

 

Fig. 3. Schematic of node breakdown. (a) Node breakdown of 
node 3. (b) removing the node and all edges link with it. (c) 
remaining transmits function. 

(2) Cascading failure 
Supposing the capacity of load is positively related 

with load power Pl for a node, α is tolerance coefficient of 
the node which is more than zero. 

Select one node that has not been attacked each time 
to augment its load power. According to the node status 
and allocation strategy given by equation (5), the power 
of the node is allocated. Re judge the distribution of all 
nodes with increased load until the load power of all nodes 
in the network no longer changes, record the number of 
overload nodes, fault nodes and Sr given by equation (6) 
which is the sum of the work efficiency of each node and 
shows network’s completeness. ൝ ∆𝑙௝௞ ൌ ሺ𝑙௝ െ 𝜀𝑐௝ሻ𝜏௝௞𝜏௝௞ ൌ ௖ೖି௟ೖ∑ ௖೓ି௟೓೓∈ಿ೙೚ೝ೘ೌ೗                      (5) ε  is rest coefficient which represents a node’s 
robustness in overload state. When a node is in failure 
state, ε  is zero. Nnormal is set of all neighbor nodes of 
node j which are in normal working state 𝑆௥ ൌ ሺ∑ 𝑠௜ሻ௜∈ே 𝑠𝑖𝑧𝑒ሺ𝑁ሻ⁄                      (6) 

𝑠௜ ൌ ⎩⎨
⎧ 0      , 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒                                 𝛿𝑐௜ െ 𝑙௜𝛿𝑐௜ െ 𝑐௜ , 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑖𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒1      , 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑎𝑡𝑒                                  

Overload coefficient δ  represents the capacity of 
processing extra load beyond c for nodes in the network. 
In other words, δ𝑐௜ is maximum possible load value for 
node i. If 𝑙௜ ൐ δ𝑐௜ , node i must be in failure state, if 
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𝑐௜ ൏ 𝑙௜ ൏ δ𝑐௜ , node i is in overload state and has a 
probability to be in failure state, the probability is called 
failure probability in the paper and it is constant for all 
nodes of a network. 

Finally, for each node in the list of nodes to be attacked, 
a set of nodes will be recorded. Fig.4 shows how these 
results measure the network’s robustness when the 
network faces to cascading failure. 

 

 

 

 

Fig. 4. Schematic of cascading failure. (a) Load power of node 
3 augments suddenly and the network’s balance is broken. 
(b)Node 3 is into failure, its load power is shunted to neighbor 
nodes, so load power of node 2 and 5 augment suddenly. Node 
2 is in failure state and node 5 is in overload state. (c) Cascading 
failure influences other nodes in the network, some nodes are in 
overload state (like node 5), some nodes are in failure state (like 
node 2 and 3) and others are in normal working state (like node 
1, 4 and 6). (d)The relation of shunt of load power between 
neighbor nodes. 

3.4 Simulation process 

Using evaluation methods mentioned in section 3.3, we 
can study the robustness of a network to the addition of 
capacity and the network’s parameters. 

(1) Simulation of attacks.  

For the simulation of attacks, two types of evaluation 
methods are mentioned: node breakdown and cascading 
failure. Different attack strategies are used to attack the 
network specified times, then taking the average of these 
evaluation results as the final result. Three attack 
strategies are proposed. In random strategy, every node 
has a same probability to be chosen. In preference of flow 
S strategy and preference of degree k strategy, the 
probability of being chosen is positively correlated with 
flow S and degree k respectively. 

(2) Capacity addition.  
Establishment of local and supplementary power 

station is widely used to enhance a network’s robustness. 
An example of the capacity addition of a network is 
shown in Fig.5. 

The addition strategies are composed by three 
decisions (2×2×4=16). Metrics includes the node’s flow S 
and degree k. Order direction decides whether to choose 
the biggest value node first or the smallest value node first. 
Preference decides that which kind of nodes is preferred 
(generator, load or pivot) to be added capacity or be 
treated equally. 

 
Fig 5. Capacity addition. Choose some nodes by addition 
strategies and make their generated power is augmented. In 
reality, establishment of local and supplementary power stations 
like distributed photovoltaic power stations can realize capacity 
addition. 

 

4 Results and discussion 

4.1 Default setting of simulation 

There are many of optional parameters for the simulation, 
so default setting of these parameters should be chosen at 
first. The default setting of these parameters mainly bases 
on two standards. The first standard is that default 
parameter should be close to real situation. The second 
one is that default parameters should be good for making 
results of simulation distinct. In this paper, tolerance is 0.6, 
overload coefficient is 1.5, failure probability is 0.5, rest 
coefficient is 1 and overload ratio is 1 as default setting. 

Reverse or not is a parameter used in our different 
strategies. When reverse is false, nodes are sorted from 
big metrics value to small metrics value. When reverse is 
true, nodes are sorted from small metrics value to big 
metrics value. 

4.2 Parameters and results in simulation of 
cascading failure 

 

    
 

, 0Web of Conferences https://doi.org/10.1051/e3sconf/20E3S 143 201430
ARFEE 2019

 (2020)20 201 199

4



 

In simulation of cascading failure, failure node number, 
overload node number and Sr are recorded. 

(1) Tolerance coefficient 
Table 1. Simulation result with different tolerance 

coefficient 
tolerance result 

failure overload Sr 

0.3 3.3089 3.8623 0.8853 
0.4 3.0591 3.467 0.8937 
0.5 2.5923 3.007 0.9104 
0.6 2.2753 2.7373 0.921 
0.7 2.0855 2.4176 0.9266 
0.8 1.914 2.2891 0.9324 

From the simulation result, it can be observed that, 
firstly, tolerance coefficient is a significant parameter for 
the robustness of a network. Bigger tolerance coefficient 
brings a stronger robustness when the network faces to 
danger of cascading failure. Secondly, 0.6 seems like a 
threshold value of tolerance coefficient for this model. 
Therefore, for a network whose tolerance coefficient is 
less than 0.6, augmentation of tolerance coefficient is 
likely a good choice to enhance the network’s robustness. 

(2) Overload coefficient and failure probability 
Exactly as introduction in 3.3, overload coefficient 

and failure probability are in relation of mutual 
cooperation. That’s why the two parameters are discussed 
together.  

From the simulation result, it can be observed that, 
firstly, bigger overload coefficient and smaller failure 
probability bring a stronger robustness. Secondly, if any 
parameter in the two is bad, it will influence the network’s 
robustness badly though the other parameter is very good. 
Thirdly, failure probability plays a more important role in 
the robustness of a network than overload coefficient. As 
a conclusion, if we want to enhance the robustness of a 
network by ameliorating overload coefficient and failure 
probability, ameliorating of worse one is the first choice. 
If there isn’t bad parameter or they can’t be judged easily, 
ameliorating of failure probability can get a better result 
likely.  

(3) Rest coefficient 
From the simulation result, it can be observed as 

follow. Firstly, there is no doubt that bigger rest 
coefficient brings a stronger robustness. Secondly, rest 
coefficient isn’t as significant as other parameters for the 
robustness of a network. The augmentation of Sr is only 
0.0019 when rest coefficient increases from 0.6 to 1. As a 
reference, the augmentation of Sr is 0.0106 when 
tolerance coefficient increases from 0.5 to 0.6. 

(4) Overload ratio 
Unlike other parameters, overload ratio hasn’t 

influence for the robustness of a network, because it is just 
a parameter of the simulation of attack rather than a 
parameter of the network. But from the results, we can 
observe that, firstly, when overload ratio is smaller than 
0.5, the danger and damage of cascading failure are slight. 
When overload ratio is around 1, the danger and damage 
are acceptable. But when overload ratio is close to 1.25 
even exceed to 1.25, the danger and damage are 
considerable. In reality, when considering about 
cascading failure problem of power grid, we can ignore 

suitably perturbations whose overload ratio is less than 
0.5, and avoid perturbations whose overload ratio is more 
than 1.25 as far as possible. 

4.3 Results of capacity addition 

In this section, computer simulations are conducted with 
different addition strategy and addition parameters. We 
discover and discuss the difference of strategies and how 
these parameters influence the result of simulation.  

(1) Addition strategy 
From the simulation result, some interesting 

phenomena can be observed. Firstly, results from 
simulation of node breakdown and simulation of 
cascading failure have consistency basically. The 
difference of results from simulation of cascading failure 
is more distinct and representative. 

Secondly, for simulation of node breakdown, 
strategies whose reverse is true have a better effect for 
enhancing the robustness of a network. It’s reasonable, 
because more important node is more likely to meet 
trouble no matter in our simulations or in reality. And 
node breakdown simulate that a node loses its function 
directly, so make an important node more important isn’t 
an effective way to enhance the robustness, sometimes it 
is even counter-productive. On contrary, adding capacity 
for less important nodes and make the network more 
balanced can get a better effect. 

Thirdly, three types of node are good choice to add 
capacity for enhancing the robustness of a network: nodes 
that have a big degree, nodes that have a small S and aren’t 
pivot node, pivot nodes that have a big S.  

Fourthly, preference doesn’t play an important role in 
these results, except when we set S as metrics and 
preference as pivot, there is an obvious otherness. No 
matter what we set preference from none, generator and 
load, there isn’t a big distinction. But if we must analyze 
which preference is better from these results, setting load 
as preference seems like a good choice. 

(2) Addition ratio and addition station ratio 
From the simulation result, it can be observed that, 

firstly, the two parameters interplay, and change of one 
parameter can’t decide directly how the robustness of a 
network change. When addition station ratio is small, the 
upper limit that the robustness can be promoted is 
relatively low. When addition ratio is small, the exact 
augmentation of robustness brought by capacity addition 
is finite, no matter we concentrate them in a spot of 
stations or disperse them to a lot of stations.  

Secondly, when addition ratio and addition station 
ratio increase at same time, the result has a distinct 
improvement. 

Thirdly, bad choice of addition node can lead to a 
negative effect, especially when addition ratio is small, 
because the load node with weak robustness is weakness 
of a network in cascading failure and a bad capacity 
addition process can generate more such weakness. To 
avoid this condition, setting load node as preference is a 
good choice. 
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Table 2. Simulation result with different addition ratio and addition station ratio  
(addition strategy: metrics is S, preference is none and reverse is true) 

addition ratio station ratio 
node breakdown cascading failure 

CC Cg_ori Cg failure overload Sr 
Before capacity addition 0.9106 0.3286 0.2964 2.3486 2.7734 0.9188 
0.05 0.05 0.9148 0.3394 0.3091 2.2449 2.7061 0.9224 
0.05 0.15 0.9093 0.3394 0.3101 2.2731 2.7251 0.9217 
0.05 0.25 0.9081 0.3394 0.3087 2.6258 3.0653 0.91 
0.15 0.05 0.9226 0.3601 0.3312 2.2004 2.6002 0.9239 
0.15 0.15 0.9161 0.3601 0.3319 1.7506 2.2771 0.9388 
0.15 0.25 0.9202 0.3601 0.3337 2.1175 2.8165 0.9265 
0.25 0.05 0.9203 0.3796 0.3501 2.2295 2.6283 0.9232 
0.25 0.15 0.9214 0.3796 0.3537 1.3176 1.6905 0.9538 
0.25 0.25 0.9239 0.3796 0.3539 1.5086 2.1226 0.9473 

 

5 Conclusion 
In this paper, a model method for power grid is proposed 
to evaluate the robustness of a network. Then how to 
enhance the robustness of a network is discussed. For 
example, changing the parameters setting or adding 
capacity. 

The simulation method has two advantages. First, the 
simulation result shows not only the change of parameters 
in damaged node, but also the interaction between nodes 
and the change of whole network. Second, the simulation 
method refers to two different evaluation methods, it can 
get a more all-sided result. We measure the importance of 
each parameter for the robustness of a network and 
propose some suggestions and strategies to enhance the 
robustness effectively. 

It can be found that capacity addition with good 
strategy and value setting is an excellent way to enhance 
the robustness of a network. Distributed photovoltaic 
power station is very appropriate to realize the goal. Our 
study provides some good strategies for setting distributed 
photovoltaic power stations and a simulation method to 
measure the improvement of robustness brought by them. 
The simulation results in this article base on IEEE 30, and 
same conclusions appear with IEEE 57 and IEEE 118. 
The general tendency of simulation results for three 
different power grids is similar, which means the 
conclusions have generality. This paper also uses other 
simulation methods mentioned by other papers to 
simulate with same power grid network and the 
simulation results and conclusions are more or less similar. 
The simulation method and improvement strategy can be 
used in the engineering of power grid and establishment 
of distributed photovoltaic power system. 

In the future, in order to get more comprehensive 
conclusion, the study of power grid complex network can 
consider more characters like network’s mean degree and 
import more physical relations and parameters of power 
grid. 
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