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Abstract. To make efficient use of image-based rock physics workflow, it is necessary to optimize different 
criteria, among which: quantity, representativeness, size and resolution. Advances in artificial intelligence 
give insights of databases potential. Deep learning methods not only enable to classify rock images, but 
could also help to estimate their petrophysical properties. In this study we prepare a set of thousands high-
resolution 3D images captured in a set of four reservoir rock samples as a base for learning and training. 
The Voxilon software computes numerical petrophysical analysis. We identify different descriptors directly 
from 3D images used as inputs. We use convolutional neural network modelling with supervised training 
using TensorFlow framework. Using approximately fifteen thousand 2D images to drive the classification 
network, the test on thousand unseen images shows any error of rock type misclassification. The porosity 
trend provides good fit between digital benchmark datasets and machine learning tests. In a few minutes, 
database screening classifies carbonates and sandstones images and associates the porosity values and 
distribution. This work aims at conveying the potential of deep learning method in reservoir characterization 
to petroleum research, to illustrate how a smart image-based rock physics database at industrial scale can 
swiftly give access to rock properties. 

Introduction 
Digital rock analysis recently becomes an important part 
of the laboratory services in oil and gas industry. 
Numerical properties accelerate and improve the 
understanding of the reservoir behavior. 
 Computed tomography scans from rocks associated 
with Digital Rock Physics (DRP) analysis receives 
considerable and extended use in the oil and gas 
laboratory services. Computed micro-tomography 
(MCT) scans of rocks record multiple structural 
information such as the texture and the rock fabric. A 3D 
image of a rock sample gives access to the actual 
representation of the mineral phase and the pore space. 
Rock images with voxel size down to the micrometer 
resolution allow to extract the topology of the pore 
space. Once segmented in two (usually pore and solid) or 
more phases of interest, the MCT images can be used to 
simulate porous media physical properties such as fluids 
transport, electrical and geo-mechanical properties as 
well as processes like enhanced oil recovery simulation 
[1, 2]. Ongoing improvements in MCT systems and 
image analysis software quickly provide increasing 
amounts of data. Properties computed from rock images 
accelerate and improve the understanding of the 
reservoir behavior. 
 In DRP analysis, key elements are the voxel size and 
the representative elementary volume (REV) determined 

during the acquisition phase. A too low image resolution 
can restrict the pore space reconstruction, causing bad 
pore space topology determination and rock properties 
estimation as demonstrated in [3]. Al-Raoush [4] and 
Papadopoulos reveals that the minimal REV for particle 
size distribution and coordination number is larger than 
the minimal REV for porosity. This technical restriction 
results in a permanent search of increasing resolution 
and volume size of the acquired images. At the same 
time the constant progress of acquisition technique leads 
to more and more image acquisition generating dozen 
terabytes of data needing to be processed afterward. As a 
consequence, standard image processing techniques 
become more and more limited and need to be 
automated to work with an efficient workflow. 
 Recent advances in high performance computing and 
machine learning (ML) will probably lead to new and 
more efficient computations. At the present time, 
research carried out on deep learning produces various 
frameworks easily accessible that particularly 
democratize its uses. Deep neural network provides 
excellent results for X-ray computed tomography (Wang 
[5], Würfl et al. [6]). Convolution neural network (CNN) 
is an important deep learning architecture. It can extract 
the image features automatically and has high 
classification accuracy. CNNs have achieved a wide 
range of applications such as plant classification, face 
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recognition, handwritten Chinese character recognition 
and so on Mikia et al. [7] and Lopes et al. [8]. 
 Naranjo Leon et al. [9] provided a permeability-
porosity relationship for each rock type, allowing to 
complement the reservoir characterization in the un-
cored wells. Chen and Zeng [10] demonstrated the 
capability of machine learning in rock facies 
classification from wireline log scalar attributes 
improving by feature augmentation. Compared to 
conventional image segmentation methods, machine-
learning segmentation could come closer to the ground 
truth for determining the porosity from noisy MCT 
images (Berg et al. [11]). Karimpouli and Tahmasebi 
[12] revealed that a CNN algorithm improves the 
accuracy of a segmentation comparing with a multiphase 
thresholding segmentation. Their network also produced 
valid results for unseen images with a categorical 
accuracy of about 96%. Araya-Polo et al. [13] used a 
deep learning architecture to instantaneously predict 
permeability of clastic rocks from high resolution 
Scanning Electron Microscopy images. Sudakov et al. 
[14] validated a 3D CNN method for predicting 
permeability of digital Berea sandstone volume subsets.  
 In this study we pursue tests on the CNN potential 
for DRP predictions. We provide some proofs of concept 
and discuss how they could be designed to be integrated 
in a more global usual analysis workflow. The typical 
size of a MCT image, a few dozen gigabytes, is huge in 
comparison to hardware capacity (some gigabytes for 
GPU) and time consuming. That is why the CNN is 
relevant to emphasize relevant features with a reasonable 
time and standard computing resources. 
 The goal of this study is thus to explore and evaluate 
the contribution of machine learning as a tool to evaluate 
geological and petrophysical properties directly from 
grayscale MCT scan images. The purpose is to deploy an 
automated workflow directly after the reconstruction of 
3D rock images.  
 The paper is organized as follow: we first introduce 
the basics of CNN algorithms and the selected image 
database used for this study. Second, we present the 
classification of reservoir sedimentary rock types from 
grayscale MCT images using an adapted version of the 
Inception-V3 network, named RockClass model. Then 
an optimized regression-CNN network, named RegPhi 
model, is used to estimate the total porosity from MCT 
scan images without segmentation. The porosity is 
evaluated thanks to an AutoEncoder model realizing an 
automated segmentation from the grayscale images and 
associating the total porosity. Finally, the results are 
discussed. 

Workflow description 

Machine learning concepts 

Convolutional neural networks (CNNs) are a powerful 
tool widely used in various computer vision problems, 
like image classification [15], object detection [16], 
segmentation [17] and image enhancement. As 
convolutional networks assume that pixels that are close 

to one another are semantically related, they seem a good 
candidate to extract physical properties from MCT 
images. 
 During the last decade, many network architectures 
(types of layers, size of layers, interconnexion of layers) 
have been experimented. In this paper, we use 3 types of 
networks. 
 The first one is a customization of the Inception-V3 
network as presented in [18] developed by Google to 
solve the ImageNet Large Scale Visual Recognition 
Challenge [19]. This network has been trained on a very 
large dataset (1.2 million 2D 299 x 299 images) and is 
able to classify 1,000 kinds of images. The output of the 
network is a vector of probabilities for the image to 
belong to a specific class. 
 Then we use a network proposed by Sudakov et al. 
[14] to estimate the porosity from a MCT image. This 
network has fewer layers than Inception-V3 but is able 
to accept 3D 100 x 100 x 100 voxel images. Instead of 
providing a classification, this network is trained to fit a 
function (porosity in our case). The output of the 
network is a scalar. 
 Finally, an AutoEncoder (or encoder-decoder) 
network is used to produce a pixel-wise output. The key 
idea is to extract a relatively small set of features 
(bottleneck) from the input image data and then decode 
those features into the desired output.  
Although this kind of CNNs is able to model 
complicated phenomena due to a large number of 
parameters, it is still hard to predict the behavior of 
neural network on “unfamiliar” test examples. There are 
various techniques to overcome this difficulty: for 
instance, semi-supervised learning where a mathematical 
model is incorporated into CNN architecture or loss 
function as demonstrated in [20 – 22]. 

Dataset 

The petroleum reservoir rocks are widely composed of 
two main lithological classes, sandstones and carbonates 
[23]. The original database is made of a series of 
reservoir analogue samples including 2 carbonates from 
Estaillades [24, 25] and Savonnieres [26-28] formations, 
and 2 sandstones from Fontainebleau [29, 25] and Berea 
[30-33] formations. For each sample, the rock type and 
the rock formation are notified in the generated database 
which will provide the predicted class of rock type. 
 See below Table 1 for a description and illustrations 
of the image collection. 
 The core plugs are imaged in 3D with a voxel size of 
3 to 4 µm. Having the same voxel size ensures a 
consistent learning of the patterns. This voxel size 
proposed by most of micro-CT scanners is commonly 
used for imaging rock porous media. 3-µm voxel size 
enables the internal fine structures to be imaged 
accurately, though this is the limit between macropore 
and micropore for the Estaillades sample. Although it 
remains a challenge to accurately predict porosity from 
subresolved imaged porous media, we choose to 
disregard the porosity resolution influence (Saxena et al. 
[34]). We use only 2-phase segmentation which totally 
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ignores the subresolved porosity. The 2-phase 
segmentation handed by an expert user reflects the most 
common arbitrary segmentation and its known 
sensibility. 
Sub-resolution porosity involves low contrast and 
blurred limits between the different phases, which can 
partly cause a dispersion of the results. These segmented 
images are taken as references for the training network 

predicting the porosity. The goal is to try to predict an 
estimation based on particular subjective expert 
appreciation, which may differ from the ground truth 
porosity. For monomineral sample, it is possible to take 
into account grey levels reported to microporosity thanks 
to a mean grey segmentation method [25]. 
  

 
Table 1: List of the selected rock images, a collection based on sandstones and carbonates, associated to the CT image information 
and to the lab and computed basic measurements. 

Rock type 

& formation 

Lab measurements Cross-section of the CT image, 

CT image information and Property estimations 

Carbonate 

Estaillades 

Porosity: 25% 

Permeability: 273 mD 

 

Voxel size: 3.1 µm 

Image size: 1000 x 1000 x 1000 
voxels 

 

Porosity: 15% 

Permeability: 475 mD 

Carbonate 

Savonnieres 

Porosity: 22% 

Permeability: 115 mD 

 

Voxel size: 3.8 µm 

Image size: 1000 x 1000 x 1000 
voxels 

 

Porosity: 22% 

Permeability: 50  mD 

Sandstone 

Berea 

Porosity: 20% 

Permeability: 500 mD 

[35] 

 

Voxel size: 3.2 µm 

Image size: 1000 x 1000 x 1000 
voxels 

 

Porosity: 21% 

Permeability: 620 mD 
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Sandstone 

Fontainebleau 

Porosity: 12% 

Permeability: 320 mD 

 

Voxel size: 3.2 µm 

Image size: 1000 x 1000 x 1000 
voxels 

 

Porosity: 12% 

Permeability: 380 mD 

  
 Voxaya’s software Voxilon [36] is used to extract a 
dataset of 18 images of size up to 1000 x 1000 x 1000 
voxels from those 4 digital plugs. An expert user 
generates the 3D binary segmented images by selecting 
the threshold values. The total porosity and absolute 
permeability are computed from each segmented image. 
From these large blocks, small 100 x 100 x 100 voxels 
non-overlapping images are extracted using Python 
scripting tools [36], leading to a database with more than 
36,000 images (18,000 CT and 18,000 segmented). For 
each segmented image, related pore volume fraction, 
related permeability and tortuosity are computed, the last 
two properties not being presented in this paper. For 
each study, part of the database is used for training and 
some data is always kept aside for evaluation (training 
assessment) and testing (model assessment). 

Rock classification 
Convolution neural network (CNN) can automatically 
extract image features and presents high classify 
accuracy. 
 The goal is to prove that the rock types and 
formations classification can be realized using existing 
technologies for image classification. 

Network architecture 

Here we choose to use the pre-trained Inception version 
3 (Inception-V3) model specialized in 2D image 
classification by feature extraction, provided by the 
TensorFlow framework. This network is quite optimized 
and contains 48 layers (see Figure 1 below). A 
specialized algorithm for training is designed to 
overcome the limitations of usual algorithms. 

Transfer Learning Concept 

 
All the power of the inception approach lives in the 
Transfer Learning concept. The inception network model 
is a complex network, so training the model directly 
from the beginning would cost at least a few days. 
However, using the method of Transfer Learning, the 
parameters of the first layers are kept unchanged and 
only the last layer from the network is adapted to the use 
case and trained. The last layer is a Softmax classifier, a 
mathematical function which outputs a probability 
distribution [37]. The porosity for a patch 100 x 100 x 
100 is individually estimated. To evaluate the porosity 
for the whole rock sample one could compute porosity 
for every patch and average the result. It is replaced by a 
layer with as many neurons as there are classes to choose 
from. The network has to be retrained to update the 
weights of this layer using a back propagation algorithm 
and the cross entropy loss function. In our case, we use 4 
classes: Berea, Fontainebleau, Estaillades and 
Savonnieres. 

Training 

As input data, we use 4,000 grayscale 2D slices (1,000 
per class) resized to be compatible with the network 
(initially 1000 x 1000 resized to 299 x 299) and rescaled 
between 0 and 1.0. Training duration is about 6 minutes 
on a 32 cores Intel Xeon(R) CPU E5-2667 v3 @ 
3.20GHz system. 

Results 

For testing, 1,200 slices (300 slices per class) from 
images were analyzed and the computation took 64 
seconds. Eventually the data for testing reveals a final 
accuracy of 100% for the selected rock typing 
classification. Recognition between the 2 lithological 
rock types (sandstone and carbonate) is 100% and 
recognition of the 4 rock formations is also 100%. 
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Figure 1: Inception V3 architecture (source: Google codelabs). 

Porosity estimation 

Porosity from CT scan without segmentation 

In this paper we try to predict porosity from grayscale 
3D images. Araya et al. [13] already used grayscale 
SEM image as input for DL-based permeability 
predictions avoiding the segmentation, the highest 
sensitive step linked to the resolution, and speeding-up 
processing workflows. 
 Following that work, we focus on the Berea 
sandstone sample for training and prediction imaged in 
3D. For the network architecture we take inspiration 
from Sudakov et al. [14]. Using this network, the authors 
try to predict permeability by Linear Regression and 
CNN from segmented images. Our model RegPhi is 
implemented using the Keras framework [38] and is 
described in Table 2. 

Training 

In our study we use non-overlapping sub-blocks (100 x 
100 x 100 voxels) from 2 Berea CT images. We have 
8,000 of these sub-blocks, 3,500 being used for training 
while keeping 600 blocks for validation. 
 
Table 2: The RegPhi Network Architecture. 

Layer type Parameters 

3D Convolution 
[ filters=32, kernel_size=(5, 5, 5), 
strides=(2,2,2), padding='valid', 

activation='relu') ] 

3D Convolution 
[ filters=32, kernel_size=(5, 5, 5), 
strides=(2,2,2), padding='valid', 

activation='relu') ] 
3D Max Pooling [ pool_size=(2, 2, 2) ] 

3D Convolution [ filters=32, kernel_size=(3, 3, 3), 
padding='valid', activation='relu' ] 

3D Convolution [ filters=32, kernel_size=(3, 3, 3), 
padding='valid', activation='relu' ] 

3D Max Pooling [ filters=32, kernel_size=(3, 3, 3), 
padding='valid', activation='relu' ] 

Dense [ units=128, activation='relu' ] 
Dense [ units=64, activation='relu' ] 
Flatten  
Dense [ units=1 ] 

Results 

Figure 2 shows the distribution of the relative error on 
porosity prediction compared to the reference. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸𝐸 𝐸 𝐸 𝐸𝐸𝐸𝐸������
−𝐸𝐸𝐸���������𝐸𝐸𝐸/𝐸𝐸𝐸���������𝐸𝐸 

 These predictions are realized on a set of 1,000 sub-
blocks of 100 x 100 x 100 voxels from grayscale Berea 
sandstone images without any segmentation or 
improvement process. We use a REV-independent 
approach in order to provide prediction on large amount 
of images. Here we can see encouraging results about the 
porosity prediction, the median of the series is under 
15% despite a mean relative error of 18% (see Figure 3).  

 
Figure 2: Distribution of absolute error for porosity prediction 
in percentage from the same Berea sandstone image. 
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Figure 3: Corresponding box plot of absolute error for porosity 
prediction in percentage from the same Berea sandstone image.  

Porosity from automated segmentation 

Network architecture 

In this work, we propose an AutoEncoder network that 
segments pores in 3D rock images (see Figure 4 for a 
detailed description of the network architecture). 
 The idea is to compute the high-level features from 
the input 3D volume that already contain information 
about porosity in the training example and then decode 
those features into the segmentation mask, where every 
value corresponds to the probability of the voxel being a 
pore. To make sure that the bottleneck layer captures 
information about porosity, we predict it as an additional 
pathway in the decoder. We believe that this type of 
guidance helps the network to cope well with the 
segmentation task since it already takes the porosity into 
account while decoding. 
 Theoretically speaking, we should have trained 
network with the loss function for porosity and without. 
Nevertheless we could in general argue that some 
guidance for the bottleneck is shown to be a promising 
technique in deep learning. For instance, variational 
autoencoders are good example how this type of 
guidance improves the robustness of classification 
problem (Pu et al. [39]). 

 

 
Figure 4: Network architecture with 12 convolutional layers, bottleneck, and 12 corresponding upsampling layers. The layers are 
organized in 4 blocks with 3 layers each. On top of the encoder part, we show the number of features after each layer. On the bottom 
of the encoder, we show the tensor size. With dashed lines, we illustrate skip connections [40], where encoder features are copied to 
the corresponding decoder layers. This helps to bring small details that were lost after downscaling. The decoder part has two 
pathways, the first one recovers the segmentation mask and the second one computes the porosity. 

Computational framework 

The input data of the network is a set of grayscale CT 
image volumes of dimension 100 x 100 x 100 voxels. 
Larger images are segmented into these patches, so that 
our network can deal with input data of any shape. 
 The basic ingredients for the encoders and decoders 
are residual blocks. To decrease resolution, we employ 
strided convolutions with stride 2, so that our network is 
fully convolutional. The choice of this architecture is 
well supported in the literature [41, 42] as it allows to 
speed up the training process and deals with “vanishing 
gradients”, which is a common problem in deep learning. 
The residual blocks have a very simple structure and 

allow direct pass-through of the batch normalized input, 
see Figure 4. 
 In the encoder pathway, four groups of three residual 
blocks are chained together, 12 blocks in total. In the 
first three groups, every third block reduces the patch 
resolution via strided convolution while increasing 
feature depth, with the overall goal of gradually reducing 
dimensionality. Others keep spatial resolution the same 
while increasing the number of features. In the last 
group, both blocks decrease spatial resolution such that 
the output shape is 3 x 3 x 3 x 192, see Figure 4. The 
feature output at the representation level is concatenated. 
This is the final output of the encoder, and the bottleneck 
of the network. 
 After passing the bottleneck, the low-dimensional 
representation is decoded again by a chain of residual 
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pathways, the first one recovers the segmentation mask and the second one computes the porosity. 
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dimensionality. Others keep spatial resolution the same 
while increasing the number of features. In the last 
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the output shape is 3 x 3 x 3 x 192, see Figure 4. The 
feature output at the representation level is concatenated. 
This is the final output of the encoder, and the bottleneck 
of the network. 
 After passing the bottleneck, the low-dimensional 
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layers. The latent variables enter two decoder pathways. 
One is the path that predicts the porosity and another one 
outputs the segmentation mask. Decoder pathways that 
lead to the segmented 3D volume use transposed 
convolutions to exactly revert the encoder on the 

corresponding level. However, the only link between 
them is through the latent representation and skip 
connections, see Figure 5. To prevent overfitting, we 
apply dropout layers on the bottleneck with 0.2 
probability of each node to be discarded. 

  

Figure 5: Single residual block of the encoder and decoder networks. After batch normalization, a first path leads through a (possibly 
strided) convolution or upsampling layer and a leaky ReLU. A second path either keeps the input or passes it through a strided 
(transposed) convolution in case it needs to be resampled. Both paths are added together to produce the final output. In the decoder 
block we skip connect the corresponding encoder features to the output of the decoder. The idea is that it is much easier for such 
blocks to learn the identity transformation, or perform only small modifications to the input [42], which helps the encoder-decoder 
paths to gradually add details. 

Loss function 

In the classical supervised machine learning used to train 
the model, we need training data together with a label or 
target. By observing the random variable 𝑋𝑋 and its label 
𝑌𝑌 in the training set, the supervised learning tries to fit 
the model 𝑓𝑓𝑓to the training samples (𝑥𝑥�, 𝑦𝑦�), . . . , (𝑥𝑥�, 𝑦𝑦�). 
 Test data has similar structure as training data, but 
the network never sees it. 
 The training process can be considered as learning 
the mapping 𝑓𝑓 to predict label 𝑦𝑦∗ from the new instance 
(𝑥𝑥∗, 𝑦𝑦∗) of the test data via 𝑓𝑓(𝑓𝑥𝑥∗) 𝑓= 𝑓𝑦𝑦∗. 
 A typical cost function for image classification and 
segmentation tasks is cross-entropy with logits. 
 Let p(𝑥𝑥�) = 𝑓𝑓(𝑥𝑥�)𝑓be the probability that point 𝑥𝑥�𝑓is a 
pore. Thus 𝑝𝑝(𝑥𝑥�) 𝑓 ∈ [0,1] with 𝑝𝑝(𝑥𝑥�)𝑓close to 0 if the 
probability is low. The cross-entropy between 𝑝𝑝(𝑥𝑥) and 
𝑦𝑦𝑓 is given by: 
𝐸𝐸������������ (𝑦𝑦, 𝑝𝑝) 𝑓= 𝑓𝑦𝑦�𝑓∈𝑓�𝑦𝑦� 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝(𝑥𝑥�))𝑓𝑓𝑓𝑓𝑓𝑓𝑓(1)𝑓  

with 𝛺𝛺 being a set of all points in the training example. 
 In order to predict the porosity from the bottleneck, 
we use the standard mean squared error (MSE): 

𝐸𝐸��� 𝑓= ||ɸ� 𝑓𝑦 ɸ�||�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(2) 
where ɸ� denotes the target porosity and ɸ� is the 
predicted porosity computed at the bottleneck level. 
 Finally, to link the predicted porosity ɸ� and final 
output we compute ɸ��� 𝑓= 𝑦�𝑓∈�𝑓𝑝𝑝(𝑥𝑥�)/|𝛺𝛺|𝑓 and 
introduce another loss function: 

𝐸𝐸����� 𝑓= 𝑓 ||ɸ��� 𝑓𝑦 ɸ�||�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(3) 

that ensures that the porosity computed from the 
segmentation mask equals the predicted porosity 
obtained from the bottleneck features. 
 Final loss function is the sum of the previously 
defined loss functions (1), (2) and (3): 

𝐸𝐸𝑓 = 𝑓𝐸𝐸������������ 𝑓+𝑓𝐸𝐸��� 𝑓+ 𝐸𝐸�����𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(4) 

Training the CNN model 

From the training data, we leave aside 10% for a 
validation set whereas the rest is used for training. 
Several images are also completely held back and used 
only for testing. We implement the network using 
TensorFlow in Python3, and train it on an Intel Xeon(R) 
CPU E5-2667 v3 @ 3.20GHz system with one Nvidia 
Quadro M6000. Weights are initialized using the same 
strategy as for residual networks [40]. Stochastic 
optimization using the Adam optimizer [43] took 
roughly two days, after which loss remained stable. We 
train with batch size 10 and learning rate 1-e4. 
Reconstruction of a single pathway during evaluation 
requires about 0.5 - 1.5 seconds for the 3D volume of 
size 100 x 100 x 100. The complete segmentation of a 
1000 x 1000 x 1000 voxels image takes about 15 - 20 
minutes. 

Results 

Figures 6 and 7 show the source CT image and the 
resulting segmentations using Hysteresis segmentation 
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and the AutoEncoder network. Globally, AutoEncoder 
segmentations tend to be sharper than the binary 
thresholding but also thinner (one voxel difference on 
the boundaries). Thus, porosity computed on the 
AutoEncoder images will always be smaller than the 
reference obtained by Hysteresis segmentation. 
 

CT image Reference AutoEncoder 
segmentation 

 
Cross-section 

 
Cross-section 

segmented 
image 

 
Cross-section 

segmented 
image 

 
3D volume 

 
3D volume of 

pore space 

 
3D volume of 

pore space 

 Computed 
porosity volume: 

20% 

Computed 
porosity volume: 

15% 

Figure 6: Comparison between Hysteresis segmentation 
(Reference) and AutoEncoder model methods: original CT 
image in grayscale, segmented image with black pixels for pore 
and greyish for solid. 

 

A)  B)  
Figure 7: Cross-section (A) and 3D volume (B) images 
resulted from the comparison of segmentation methods: 
Hysteresis segmentation and AutoEncoder model. The black 
voxels are joint porosity of both segmentations and dark grey 
voxels are supplementary pore voxels in the Hysteresis 
segmentation. 

Discussion and perspectives 

Computing resources 

The most time-consuming task is the training part of the 
networks. GPU runs (using one Nvidia Quadro M6000 

graphics card) are 15 faster than CPU runs (on a 32 cores 
Intel Xeon workstation). 

Rock classification 

In this study, 4 classes of lithological rock formations are 
distinguished with a highly successful recognition rate. 
 This work will be extended to numerous classes of 
reservoir rock facies. All authors [4, 10, 12, 14] referring 
to machine learning mentioned the importance of the 
quality of the dataset and required a massive amount of 
data. This database generation with various available 
reservoir rock formations imaged at several voxel sizes 
will be a crucial step. 
 Rock classification using Inception-V3 (RockClass) 
proves to be a very promising tool. It can be used for 
pre-calibrating geological-oriented workflow in digital 
rock analysis proposing a suitable image processing and 
analysis workflow. The classification rate could be used 
as a quality control indicator for validating the image 
quality before any numerical computations. Then a rock 
class recognition is interesting to offer a fast estimation 
of the numerical properties already processed from 
similar rock class. 
 To further improve digital rock classification, 
additional physical attributes as mineralogy and pore 
fabric could probably enhance RockClass capability in 
detailing geological rock types. For example, pore fabric 
is directly related to the hydraulic radius size 
distribution, which is the key parameter for the 
permeability computation. 

Porosity estimation 

The porosity is computed on 1,000 sub-blocks of 100 x 
100 x 100 voxels by 3 porosity modules: Hysteresis 
segmentation, RegPhi an AutoEncoder networks.  
 The porosities estimated from Hysteresis 
segmentation are used as reference values. They are 
computed from segmented images obtained by binary 
thresholding. Porosity estimation obtained by Hysteresis 
segmentation is benchmarked and validated in several 
studies with diverse partners (IFPEN, Geosciences 
Montpellier, [2]).  
 Figure 8 illustrates the porosity distribution obtained 
by these 3 methods on 1,000 juxtaposed blocks of size 
100 x 100 x 100 voxels belonging to the same 1000 x 
1000 x 1000 voxels image. 
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Figure 8: Porosity distribution computed by image analysis 
(reference), RegPhi and AutoEncoder models for Berea 
Sandstone sub-blocks. 

 The reference porosity values indicate that the 
porosity ranges from 9 to 36% with a mean value of 
21.5%. This large distribution is mostly due to variation 
of the pore-solid ratio along the series of small REV of 
100 x 100 x 100 voxels with a high voxel size. The 
RegPhi and AutoEncoder results present a wider 
porosity distribution, respectively, from 8 to 41% with a 
mean value of 18.6% and from 8 to 37% with a mean 
value of 18.8%. The AutoEncoder model is considered 
being a more reliable network for predicting porosity 
values close to the values obtained by conventional 
image analysis. 
 RegPhi model allows to estimate the porosity without 
segmentation whereas AutoEncoder generates a 
segmented image to assess the porosity. Both networks 
seem to predict similar porosity distributions and from 
2.7% (AutoEncoder) to 2.9% (RegPhi) under evaluate 
the porosity compared to the reference one. This 
promising result validates improbable capabilities of 
both models to evaluate porosity directly from grayscale 
images. An intensified training is required to enhance 
their performance. 
 RegPhi and AutoEncoder networks are both trained 
on these similar subs-volumes of Berea grayscale image. 
This similarity of results demonstrates how efficient and 
accurate segmented images are generated by the 
AutoEncoder model in this study. From these automated 
segmented images, series of numerical petrophysical 
properties could be swiftly computed. A complete digital 
petrophysical workflow can thus be proposed, here for 
Berea sandstone. 

Conclusion 
In this study we aim at demonstrating the potential of 
neural network algorithms to make digital rock analysis 
simple. We work on implementing an automated 
workflow from MCT images to digital petrophysical 
measurements without operator intervention. 
 The numerical petrophysics workflow is based on a 
3-step approach. First, a rock classification from 
grayscale MCT images using RockClass model is 
investigated in the two main lithological rock reservoirs 

types, carbonates and sandstones. Then RegPhi model is 
used to predict the total porosity from grayscale MCT 
images. 
 An AutoEncoder network allows to automatically 
generate the pore space segmented image and then 
evaluate the total porosity. 
 The results of this study are not limited to 4 reservoir 
rock classes and porosity estimation, but the proposed 
workflow can be adapted for any CT rock types in order 
to deliver a complete series of numerical analysis. 
 
This work was supported by the ERC Starting Grant ``Light 
Field Imaging and Analysis'' (LIA 336978, FP7-2014). 

References 
[1] P. Gouze and L. Luquot, “X-ray microtomography 

characterization of porosity, permeability and 
reactive surface changes during dissolution”, J. of 
Contaminant Hydrology, 120-121, pp. 45–55, doi: 
10.1016/j.jconhyd.2010.07.004, (2011) 

 
[2] L. Luquot, V. Hebert and O. Rodriguez, “Calculating 

structural and geometrical parameters by laboratory 
measurements and X-ray microtomography: a 
comparative study applied to a limestone sample 
before and after a dissolution experiment”, Solid 
Earth, 7, pp. 441-456, doi: 10.5194/se-7-441-2016 
(2016) 

 
[3] S. Youssef, E. Rosenberg, N. Gland, S. Bekri and O. 

Vizika, “Quantitative 3D characterisation of the pore 
space of real rocks: Improved μ-CT resolution and 
pore extraction methodology”, Int. Symp. Soc. Core 
Analysts, Calgary, Canada, Sept. 10-12, Paper 
SCA2007-17 (2007) 

 
[4] R. Al-Raoush and A. Papadopoulos, “Representative 

elementary volume analysis of porous media using 
X-ray computed tomography”, Powder Technology, 
200, pp. 69-77, doi: 10.1016/j.powtec.2010.02.011 
(2010) 

 
[5] G. Wang, “A Perspective on deep imaging”, IEEE 

Access, 4, 8914-8924, Nov. 3, doi: 
10.1109/ACCESS.2016.2624938 (2016) 

 
[6] T. Würfl et al., “Deep learning computed 

tomography: Learning projection-domain weights 
from image domain in limited angle problems”, IEEE 
Trans. Med. Imaging, 37, pp. 1454-1463 (2018) 

 
[7] Y. Mikia et al., “Tooth labelling in cone-beam CT 

using deep convolutional neural network for forensic 
identification”, Computers in Biology and Medicine, 
80, pp. 24-29 (2017) 

 
[8] A. T. Lopes, E. de Aguiar, A. F. de Souza, T. 

Oliviera-Santos, “Facial expression recognition with 
convolutional neural networks: Coping with few data 
and the training sample order”, Pattern Recognition, 
61, pp. 610-628 (2017) 

9

E3S Web of Conferences 146, 01003 (2020) https://doi.org/10.1051/e3sconf/202014601003
SCA 2019



 

 
[9] M. A. Naranjo Leon et al., “Rock typing mapping 

methodology based on indexed and probabilistic self-
organized map in Shushufindi field”, SPE Latin 
American and Caribbean Petroleum Engineering 
Conf., Rio de Janeiro, Brazil, Nov 18-20, Paper SPE-
177086-MS, doi: 10.2118/177086-MS (2015) 

 
[10] J. Chen and Y. Zeng, “Application of machine 

learning in rock facies classification with physics-
motivated feature augmentation”, Machine Learning, 
Geophysics, arXiv: 1808.09856 (2018) 

 
[11] S. Berg, N. Saxena, M. Shaik and C. Pradhan, 

“Generation of ground truth images to validate 
micro-CT image-processing pipelines”, The Leading 
Edge, Advancements in image processing, 37, pp. 
412-420 (2018) 

 
[12] S. Karimpouli and P. Tahmasebi, “Image-based 

velocity estimation of rock using 
convolutional neural networks”, Neural Networks, 
111, pp. 89-97 (2019) 

 
[13] M. Araya-Polo, F. O. Alpak, S. Hunter, R. Hofmann 

and N. Saxena, “Deep learning-driven pore-scale 
simulation for permeability estimation”, ECMOR 
XVI, Barcelona, Spain, Dec. 3 (2018) 

 
[14] O. Sudakov, E. Burnae and D. Koroteev, “Driving 

digital rock towards machine learning: Predicting 
permeability with gradient boosting and deep neural 
networks”, Computer and Geosciences, 127, pp. 91-
98 (2019) 

 
[15] A. Krizhevsky, I. Sutskever and G. E. Hintonn, 

“Imagenet classification with deep convolutional 
neural networks”, Advances in neural information 
processing systems, 25 (2012) 

 
[16] Z. Zhao, P. Zheng, S. Xu and X. Wu., “Object 

detection with deep learning: A review”, IEEE 
Transactions on Neural Networks and Learning 
systems, Apr. 19, arXiv: 1807.05511v2 (2018) 

 
[17] Y. Guo, Y. Liu, T. Georgiou and M. S. Lew, “A 

review of semantic segmentation using deep neural 
networks”, Int. J. of Multimedia Information 
Retrieval, 7, pp. 87-93 (2018) 

 
[18] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and 

Z. Wojna, “Rethinking the inception architecture for 
computer vision”, IEEE Conf. on Computer Vision 
and Pattern Recognition, pp. 2818-2826 (2016) 

 
[19] ImageNet. http://www.image-net.org 
  
[20] A. Alperovich, O. Johannsen, M. Strecke and B. 

Goldluecke, “Light field intrinsics with a deep 
encoder-decoder network”, poster, Proc. CVPR 
(2018) 

 

[21] W. Shi et al., “Real-time single image and video 
super resolution using an efficient sub-pixel 
convolutional neural network”, Proc. CVPR, pp. 
1874–1883 (2016) 

 
[22] A. Alperovich, O. Johannsen and B. Goldluecke, 

“Intrinsic light field decomposition and disparity 
estimation with a deep encoder-decoder network”, 
IEEE European Signal Processing Conf. (2018)  

 
[23] S. N. Ehrenberg and P. H. Nadeau, “Sandstone vs. 

carbonate petroleum reservoirs: A global perspective 
on porosity-depth and porosity-permeability 
relationships”, AAPG Bulletin, 89, pp. 435-445 
(2005)  

 
[24] J. Dautriat, N. Gland, A. Dimanov and J. Raphanel, 

“Hydromechanical behavior of heterogeneous 
carbonate rock under proportional triaxial loadings”, 
J. of Geophysical Research, 116, B01205 (2011) 

 
[25] S. Youssef et al., “High resolution µ-CT combined 

to numerical models to assess electrical properties of 
bimodal carbonates”, Int. Symp. Soc. Core Analysts, 
Abu Dhabi, UAE, Paper SCA2008-37 (2008) 

 
[26] T. Bultreys, W. De Boever, L. Van Hoorebeke and 

V. Cnudde, “A multi-scale image-based pore 
network modeling approach to simulate two-phase 
flow in heterogeneous rocks”, Int. Symp. Soc. Core 
Analysts, St. John’s Newfoundland and Labrador, 
Canada, Paper SCA2015-027 (2015) 

 
[27] H. Derluyn, J. Dewanckele, M. N. Boone, V. 

Cnudde, D. Derome and J. Carmeliet, 
“Crystallization of hydrated and anhydrous salts in 
porous limestone resolved by synchrotron X-ray 
microtomography”, Nuclear Instruments and 
Methods in Physics Research, DOI: 5 
10.1016/j.nimb.2013.08.065 (2014) 

 
[28] S. Roels, J. Elsen, J. Carmeliet and H. Hens, 

“Characterization of pore structure by combining 
mercury porosimetry and micrography”, Materials 
and Structures, 34, pp. 76-82 (2001) 

 
[29] T. Bourbié and B. Zinszner, “Hydraulic and 

acoustic properties as a function of porosity in 
Fontainebleau sandstone”, J. of Geophysical 
Research, 90, pp. 1524-1532 (1985) 

 
[30] A. Sinnokrot, H. J. Ramey and S. Marsden, “Effect 

of temperature level upon capillary pressure curves”, 
Soc. Petroleum Engineering, 11, pp. 13-22 (1971) 

 
[31] P.L. Churcher, P. R. French, J. C. Shaw and L. L. 

Schramm, “Rock properties of Berea sandstone, 
Baker dolomite, and Indiana limestone”, SPE Int. 
Symp. Oilfield Chemistry, Anaheim, California, 
Paper SPE-21044-MS, Feb. 20-22 (1991) 

 

10

E3S Web of Conferences 146, 01003 (2020) https://doi.org/10.1051/e3sconf/202014601003
SCA 2019



 

 
[9] M. A. Naranjo Leon et al., “Rock typing mapping 

methodology based on indexed and probabilistic self-
organized map in Shushufindi field”, SPE Latin 
American and Caribbean Petroleum Engineering 
Conf., Rio de Janeiro, Brazil, Nov 18-20, Paper SPE-
177086-MS, doi: 10.2118/177086-MS (2015) 

 
[10] J. Chen and Y. Zeng, “Application of machine 

learning in rock facies classification with physics-
motivated feature augmentation”, Machine Learning, 
Geophysics, arXiv: 1808.09856 (2018) 

 
[11] S. Berg, N. Saxena, M. Shaik and C. Pradhan, 

“Generation of ground truth images to validate 
micro-CT image-processing pipelines”, The Leading 
Edge, Advancements in image processing, 37, pp. 
412-420 (2018) 

 
[12] S. Karimpouli and P. Tahmasebi, “Image-based 

velocity estimation of rock using 
convolutional neural networks”, Neural Networks, 
111, pp. 89-97 (2019) 

 
[13] M. Araya-Polo, F. O. Alpak, S. Hunter, R. Hofmann 

and N. Saxena, “Deep learning-driven pore-scale 
simulation for permeability estimation”, ECMOR 
XVI, Barcelona, Spain, Dec. 3 (2018) 

 
[14] O. Sudakov, E. Burnae and D. Koroteev, “Driving 

digital rock towards machine learning: Predicting 
permeability with gradient boosting and deep neural 
networks”, Computer and Geosciences, 127, pp. 91-
98 (2019) 

 
[15] A. Krizhevsky, I. Sutskever and G. E. Hintonn, 

“Imagenet classification with deep convolutional 
neural networks”, Advances in neural information 
processing systems, 25 (2012) 

 
[16] Z. Zhao, P. Zheng, S. Xu and X. Wu., “Object 

detection with deep learning: A review”, IEEE 
Transactions on Neural Networks and Learning 
systems, Apr. 19, arXiv: 1807.05511v2 (2018) 

 
[17] Y. Guo, Y. Liu, T. Georgiou and M. S. Lew, “A 

review of semantic segmentation using deep neural 
networks”, Int. J. of Multimedia Information 
Retrieval, 7, pp. 87-93 (2018) 

 
[18] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and 

Z. Wojna, “Rethinking the inception architecture for 
computer vision”, IEEE Conf. on Computer Vision 
and Pattern Recognition, pp. 2818-2826 (2016) 

 
[19] ImageNet. http://www.image-net.org 
  
[20] A. Alperovich, O. Johannsen, M. Strecke and B. 

Goldluecke, “Light field intrinsics with a deep 
encoder-decoder network”, poster, Proc. CVPR 
(2018) 

 

[21] W. Shi et al., “Real-time single image and video 
super resolution using an efficient sub-pixel 
convolutional neural network”, Proc. CVPR, pp. 
1874–1883 (2016) 

 
[22] A. Alperovich, O. Johannsen and B. Goldluecke, 

“Intrinsic light field decomposition and disparity 
estimation with a deep encoder-decoder network”, 
IEEE European Signal Processing Conf. (2018)  

 
[23] S. N. Ehrenberg and P. H. Nadeau, “Sandstone vs. 

carbonate petroleum reservoirs: A global perspective 
on porosity-depth and porosity-permeability 
relationships”, AAPG Bulletin, 89, pp. 435-445 
(2005)  

 
[24] J. Dautriat, N. Gland, A. Dimanov and J. Raphanel, 

“Hydromechanical behavior of heterogeneous 
carbonate rock under proportional triaxial loadings”, 
J. of Geophysical Research, 116, B01205 (2011) 

 
[25] S. Youssef et al., “High resolution µ-CT combined 

to numerical models to assess electrical properties of 
bimodal carbonates”, Int. Symp. Soc. Core Analysts, 
Abu Dhabi, UAE, Paper SCA2008-37 (2008) 

 
[26] T. Bultreys, W. De Boever, L. Van Hoorebeke and 

V. Cnudde, “A multi-scale image-based pore 
network modeling approach to simulate two-phase 
flow in heterogeneous rocks”, Int. Symp. Soc. Core 
Analysts, St. John’s Newfoundland and Labrador, 
Canada, Paper SCA2015-027 (2015) 

 
[27] H. Derluyn, J. Dewanckele, M. N. Boone, V. 

Cnudde, D. Derome and J. Carmeliet, 
“Crystallization of hydrated and anhydrous salts in 
porous limestone resolved by synchrotron X-ray 
microtomography”, Nuclear Instruments and 
Methods in Physics Research, DOI: 5 
10.1016/j.nimb.2013.08.065 (2014) 

 
[28] S. Roels, J. Elsen, J. Carmeliet and H. Hens, 

“Characterization of pore structure by combining 
mercury porosimetry and micrography”, Materials 
and Structures, 34, pp. 76-82 (2001) 

 
[29] T. Bourbié and B. Zinszner, “Hydraulic and 

acoustic properties as a function of porosity in 
Fontainebleau sandstone”, J. of Geophysical 
Research, 90, pp. 1524-1532 (1985) 

 
[30] A. Sinnokrot, H. J. Ramey and S. Marsden, “Effect 

of temperature level upon capillary pressure curves”, 
Soc. Petroleum Engineering, 11, pp. 13-22 (1971) 

 
[31] P.L. Churcher, P. R. French, J. C. Shaw and L. L. 

Schramm, “Rock properties of Berea sandstone, 
Baker dolomite, and Indiana limestone”, SPE Int. 
Symp. Oilfield Chemistry, Anaheim, California, 
Paper SPE-21044-MS, Feb. 20-22 (1991) 

 

 

[32] P.-E. Oren and S. Bakke, “Reconstruction of Berea 
sandstone and pore-scale modeling of wettability 
effects”, J. Petroleum Science and Engineering, 39, 
pp. 177-199 (2003) 

 
[33] S. Youssef, D. Bauer, Y. Peysson and O. Vozoka, 

“Investigation of pore structure impact on 
mobilization of trapped oil by surfactant injection”, 
Int. Symp. Soc. Core Analysts, Avignon, France, 
Sept. 11-18, Paper SCA2014-64 (2014) 

 
[34] N. Saxena, R. Hofmann, F.O. Alpak, J. Dietderich, 

S. Hunter and R.J. Day-Stirrat, “Effect of image 
segmentation & voxel size on micro-CT computed 
effective transport & elastic properties”, Marine and 
Petroleum Geology, 86, pp. 972-990 (2017) 

 
[35] S. Cyprien et al., “The impact of sub-resolution 

porosity of X-ray microtomography images on the 
permeability”, Transport in Porous media, 113, pp. 
227-243 (2016) 

 
[36] O. Rodriguez, T. Porcher, V. Planes, G. Mecuson 

and R. Bouvier, “Non destructive testing of CMC 
engine internal parts from X-ray tomographic 
images”, 9th Int. Conf. Industrial Computed 
Tomography, Padova, Italy, Feb. 13-15 (2019)  

 
[37] A. Krizhevsky, I. Sutskever and G. E. Hinton, 

“ImageNet classification with deep convolutional 
neural networks”, Advances in Neural Information 
Processing Systems, 25, pp. 1097-1105 (2012) 

 
[38] F. Chollet et al., https://keras.io (2015) 
 
[39] Y. Pu et al., “Adversarial symmetric variational 

autoencoder”, Advances in Neural Information 
Processing Systems, 30, pp. 4330-4339 (2017) 

 
[40] X.-J. Mao, C. Shen and Y.-B. Yang, “Image 

restoration using very deep convolutional encoder-
decoder networks with symmetric skip connections”, 
Proc. Neural Information Processing Systems, arXiv: 
1603.09056 (2016) 

 
[41] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual 

learning for image recognition”, Proc. Int. Conf. 
Computer Vision and Pattern Recognition, arXiv: 
1512.03385 (2016) 

 
[42] J. Springenberg, A. Dosovitskiy, T. Brox and M. 

Riedmiller, “Striving for simplicity: The all 
convolutional net”, Proc. 3rd Int. Conf. Learning 
Representations, workshop track (2015) 

 
[43] D. Kingma and J. Ba, “Adam a method for 

stochastic optimization”, Proc. 3rd Int. Conf. 
Learning Representations (2015) 

11

E3S Web of Conferences 146, 01003 (2020) https://doi.org/10.1051/e3sconf/202014601003
SCA 2019


