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Abstract. In this report we show 2 different cases in which Remote 

Sensing can help Precision Farming techniques to optimize and improve 

profits in the agricultural sector. First, we`ll show a practical case in an 
olive trees field and second an example of how to monitor a greenhouse 

crop with aerial images and deep learning techniques.  

1 Introduction 

Terms like precision agriculture (PA), precision farming, site-specific crop management 

or even site-specific farming suggest that agricultural management can be practised with 

high precision. Consequently, PA provides an alternative and realistic means to reduce and 

optimize the use of potentially harmful compounds and thus can promote a healthier 

environment for humans [1].  

The world’s food scenery is changing fast rising the global demand and increasing the 

cost of agricultural inputs [2]. The adoption of this kind of technology is lower than 5% 

usually in countries, therefore is more than 30% in USA [3].  

The general steps of PA practice are data collection, field variability mapping, decision 

making, and finally management practice. In particular, it is critical to obtain up-to-date 

images/maps during the process of decision making, thus field variability could be mapped 

using remotely sensed imagery. Drones play a special role in this field [4]. 

Hence, it is critical that farmers/Governments know where these variations exist in their 

fields and so they can adjust their farming practices accordingly [5]. Specifically, changes 

in remotely sensed reflectance can be detected before symptoms such as infections become 

visible to the human eye [6]. Because of that, we can advise our clients and calculate terms 

of productivity, fertilization maps, irrigation studies, early detection of pest/diseases [7], 

tree counting and damage assessment or automatic detection of areas/species of high 

 
* Corresponding author: jrodriguez@garnatadrone.com  

 , 0 (2020) https://doi.org/10.1051/e3sconf /20201490E3S Web of Conferences 149 100 100

RPERS 2019
6 6

  © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 

mailto:jrodriguez@garnatadrone.com


ecological value for the design of management plans.  All the factors that we consider are 

those that we obtain from the multispectral index generation, as NDVI, NDWI, RVI, RI, 

GNDVI [9], and we analyze soil and plant, climate and DTM. 

Here we present 2 different cases of study to show how this methodology can be 

adapted to any kind of crop, it can be useful in greenhouse crops too, improving and 

modernizing the agroforestry sector using the information obtained through remote sensing 

and changing the traditional farming practices. 

2 Material and Methods 

2.1 Study Sites 

Two different field trials in Andalusia are included in this report. The first trial (Case A) 

is an Olive Trees field located in a production farm in the region of “Montes Orientals” in 

Granada province, Spain (37°23’33.93"N, 3°24’40.93"O) (Fig. 1). 

 

Fig. 1. Study Area and location of olive trees field. Image Source: Google Earth. 

 

The area has 11000 olive trees in 51 hectares of Picual variety, planted in 2006 at 7 m x 

6m with drip irrigation system incorporated.  

The second trial (CASE B) are three greenhouses situated in El Ejido, Almeria province 

(36°44’14.68"N, 2°46’46.21"O), Spain (Fig. 2). First and second greenhouse with 

chocolate pepper and last of them cucumber, three in early stages. 

 

 

Fig. 2. Study site for case II. Three green houses in El Ejido, Almeria, Spain. Image Source: 

ArcGIS. 
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2.2 Image Acquisition and Processing. Analysis overv 

The airborne campaigns were conducted using an UAV Parrot Disco AG Pro with a 

multispectral camera Parrot Sequoia with 4 different channels, Red, Green, Near Infrared 

and Red Edge, operated by Garnata Drone SL. The flights were programmed with Pix4D 

capture software, according to several factors, including the orography, cultivation system, 

plantation frame, etc. 

CASE A) Olive Trees. We plan 2 flights per year, first before Spring (February 2018). 

We decided to carry out this test prior blooming to evaluate the real status in the crop field 

and design the amendments which the farmer needs to apply for in order to correct the 

worst areas. Second flight in Summer (June 2018) during the drought and before the 

harvest. In this flight we can evaluate the historical status in the olive tree, in case it’s 

necessary to correct the irrigation plan. Finally, also we can check the effect that our 

recommendations to correct that.  

The height was 120 m and overlap selected was more than 85% for a ground sample 

distance (GSD) of 13 cm/pixel. 

CASE B) Green House. We plan a series of multispectral flights with a height of 80 m 

an overlap more than 90% that give us a GSD of 7,13 cm/pixel. The temporary distance 

between flights is one month.  

With images obtained from the drone, in both cases, we generate ortoimaging processed 

by Pix4D software (Ecublens, Switzerland) and spectral index maps as NDVI (1), RVI (2), 

GNDVI (3) and NDWI (4) using SIG software, that allow us to detect affected areas that 

show high variability in one of those indexes, so we can separate the field into sectors based 

on the data found, using Object Based Image Analysis (OBIA) and Deep Learning. 

NIR-Red
NDVI=

NIR+Red

        (1) 

where, NIR – Near Infrared, and Red – Red Channel 

NIR
RVI=

Red
       (2) 

NIR-Green
GNDVI=

NIR+Green
      (3) 

where, Green – Green Channel 

Green-NIR
NDWI=

Gren+NIR
     (3) 

2.3 Field Measurements 

CASE A) Olive Trees 

Once we know the “Problem zones”, we can sectorize the field and take samples in 

areas with low spectral index values to create a complete study of vegetable variables from 

lab data (soil, water, leaf analysis, fat yield of the olive, etc…) which will explain the 

causes of anomalies and allow us to treat them in the proper way to optimize the crop 

productivity. 
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We received simultaneously the historical information and data of the crop field and 

produced an examination of the plantation that details all the necessary information for the 

decision-making process. 

CASE B) Green House 

We take Leaf Area Index (LAI) samples in several random points inside the green house 

(Fig. 3). Every point is measured by submetrical GPS. This measurement must be done at 

same time we fly UAV, so we can compare spectral image and ground control points/ 

 

 
Fig. 3. Yellow points represent measurements of LAI taken by technicians at the same time 

UAV is flying. Image Source: Andalusian Center for evaluation and assessment of global 

change – CAESCG, Almeria, Spain. 

3 Results and discussion 

3.1 Olive Fields 

Using Deep Learning, we generate a classification that allows us to create a database in 

which each tree is related to the values of the vegetable variables taken into account.  

We then recommended amendments to the property owner based on the sectorized maps 

(Fig. 4) who combined information from spectral index and plant soil samples taken in the 

problem areas. 

   
a    b 

Fig. 4. Diagnosis map. a) Left February 2018 flight. In red worst areas that needs to be correct. 

b) Right February 2019 flight, the red zones have decreased after our amendments 

recommended. Image Source: Garnata Drone SL. 
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Below in the Table 1 is a resume of last three years with and without assessment. 
 

The average number of harvest per tree and hectare 

Year Kg per tree Kg per Hectare Advice Service 

2017 18.18 3995.60 No 

2018 7.27 1597.80 Yes (Start) 

2019 22.72 4993.40 Yes 

The average of profit per tree and oil per each kg of olive 

Year Oil per each Kg (%) Profit per tree (€) Advice Service 

2017 22 12.72 No 

2018 26 7.18 Yes (Start) 

2019 20 14.19 Yes 

Table 1. Resume values since 2017 with and without assessment. 

3.2 Green House 

The spectral data taken by drones will be validated with sensors arranged inside the 

greenhouses and treated by techniques of Object-Oriented Image Analysis (OBIA) and 

Deep Learning. 

This will allow us to identify regions (Fig. 5) of the crop that present anomalies in the 

value of the greenery of the vegetation. These anomalies are directly related to the elements 

that can damage the crops. The results will be transferred to the technicians of the company, 

so that they can be applied to the treatment and monitoring of the status of the crops. 

 

   
NDVI      NDWI 

Fig. 5. NDVI index in greenhouses (Left) and NDWI index (Right). Clearly the zones were 

sectorized based on the values of spectral information. 

This would allow us to obtain primordial information for the development of 

monitoring systems for the greenhouses’ crops that would have high spatial and temporal 

precision. 
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4 Conclusion 

The monitoring of crops through spectral images is a reality in the rural world. These 

types of images, which provide information on functional aspects of the plants, have 

traditionally been obtained from sensors on satellites. However, spectral images from 

drones are equally effective and much more affordable. 

Applying this methodology either in the open air or in greenhouses allows us to 

improve the physiological state of the crop by perfecting the application process to different 

plants and crops of necessary treatments, therefore improving productivity while 

simultaneously taking part in helping to protect the environment minimizing the inputs of 

phytosanitary and fertilizers, as we achieve better matching of fertilizer applications to crop 

yield. 

Benefits to society include creation of high technology jobs and mitigation of 

environmental pollution arising from over – application of nitrogen and other fertilizers. 

Therefore, is crucial that producers and scientists work together to create the future 

agriculture. This method does not replace all other sources of information, but help to 

improve it. 
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