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Abstract. In this work, we propose an algorithm for compressing 

lossless hyperspectral aerospace images, which is characterized by 
the use of a channel-difference linear regression transformation, 
which significantly reduces the range of data changes and 
increases the degree of compression. The main idea of the 
proposed conversion is to form a set of pairs of correlated channels 
with the subsequent creation of the transformed blocks without 
losses using regression analysis. This analysis allows you to reduce 
the size of the channels of the aerospace image and convert them 
before compression. The transformation of the regressed channel is 
performed on the values of the constructed regression equation 
model. An important step is coding with the adapted Huffman 
algorithm. The obtained comparison results of the converted 
hyperspectral AI suggest the effectiveness of the stages of 
regression conversion and multi-threaded processing, showing 
good results in the calculation of compression algorithms. 
  

Introduction 

Hyperspectral aerospace images (AI) are images obtained from Earth remote sensing 

spacecraft (ERS), designed to solve problems in the field of applied research. Studies to 

compress hyperspectral AI are the most interesting; this is subject to a large number of 

publications. In hyperspectral AI for each pixel, the hyperspectral camera accepts light 

intensities for a large number of adjacent spectral ranges reaching several hundred. 

Hyperspectral AI due to the rich content of information are effectively used in the tasks of 

automated processing of remote sensing images. The stages of hyperspectral (AI) 

processing can include: internal representation of images, image conversion, geometric 

correction of scenes, and image preprocessing. Compression efficiency can consist of the 

following steps - a change in the internal representation of images, converting it to a 

compact form, and using pre-processing. Compression is the preprocessing and removal of 

redundancy in images. There are two types of redundancy in hyperspectral AI, spatial and 

spectral. These redundancies will allow the development of efficient compression 

algorithms. 
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Based on researches of hyperspectral AI in the field of compression [1–20] presented in 

the works of scientists from Russia, China, the USA, India, etc., it can be assumed that the 

developed methods and lossless compression algorithms for hyperspectral AI can be 

improved by reducing their computational efficiency and increasing the compression ratio 

by modifying the preprocessing steps using mathematical methods. In addition, new 

compression preprocessing steps can be proposed that effectively increase the compression 

ratio and reduce the compression process time. The latest best results in solving the 

compression problem, as in many other remote sensing problems, were obtained using 

well-known algorithms in their various combinations and groups, while having low 

compression ratios, the average compression ratio is 3.85. 

Based on the analysis of lossless GI compression methods and algorithms, it should be 

concluded that the most effective ways to solve the compression problem are: 

- taking into account spectral correlation, which gives certain advantages on the basis of the 

calculated correlation matrix; 

 application of a new method of ordering GI channels; 

 use of interpolation based on mathematical methods; 

 arithmetic coding and the Huffman algorithm, which are the best among statistical 

methods; 

 the use and organization of parallel compression processing to reduce the cost of 

computing resources. 

In a previous study of the authors of a multi-stage compression algorithm [10], the main 

drawback remains - the computational efficiency of compression is low, large 

computational costs are required, which makes it difficult to use them to solve GI 

compression problems. 

Therefore, in this work, a modification of the algorithm is proposed taking into account 

the correlation [10], in which an attempt is made to eliminate this drawback. 

Modification of the algorithm with regression analysis. The essence of the modification 

is to calculate the linear regression coefficients between the values of the generating 

channel (master) and the regressed channels (slave, compressible) of the GI by forming 

arrays of differences between master and slave. When using a PC with different computing 

capabilities, the modification of the algorithm uses a different number of threads, 

corresponding to the number of available processor cores. The proposed modification of the 

lossless compression algorithm taking into account inter-band correlation and regression 

analysis will increase the compression ratio by more than two times in comparison with the 

use of universal archivers. The proposed algorithm for finding the best channel groups for a 

given correlation value will increase the efficiency of the channel subtraction (difference 

transformation) application. 

 
1 Description of the approach to the problem of compression of 
hyperspectral AI 

 
The sequence of processing steps and the compression algorithm: 

1) calculation of the correlation between all pairs of AI channels and determining the 

sequence of channel coding and decoding; 

2) regression conversion algorithm; 

3) obtaining channel differences and their block conversion; 

4) compression by a statistical algorithm. 

We describe each step of the algorithm. 

1 step. We calculate the values of the correlation matrix between all pairs of AI 

channels, revealing the most correlated groups of channel pairs. Based on the matrix, we 
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will form and determine the sequence of transformation (coding) and inverse 

transformation by the method of constructing a strongly branching tree. 

2 step. Regression analysis based on step 1. Let us calculate the linear regression 

coefficients between the values of the generating and regressing channels of the 

hyperspectral AI by creating optimal values for generating arrays of differences between 

master and slave. 

3 step. Compression by the Huffman statistical algorithm [2]. 

 

2 Description of the compression algorithm 
 
2.1 Compression Sequencing 
 

At the first stage, we transform the data structures based on the initial hyperspectral AI, 

using mathematical models for finding the correlation between all pairs of channels, and we 

determine the coding sequence. Knowing that hyperspectral AI are obtained in the spectrum 

of a single wave, we assume that a certain degree of dependence can be determined 

between pairs of channels. To determine the magnitude of this dependence, we use the 

formula for calculating the Pearson correlation coefficient (aka linear correlation 

coefficient).The formula requires two sequences of data, so we first extract two sequences 

of samples from a pair of channels. This happens as follows: we represent the two-

dimensional data matrix of one channel in the form of a linear array (passing the matrix row 

by row from left to right and rows from top to bottom), then select a certain number of 

samples in it (we denote the number by the letter m) dividing the array into approximately 

equal segments. From the second channel, we extract a sequence of samples that are located 

in the matrix at the same positions as the samples from the first channel. We denote the 

obtained sequences by the letters x and y, and the unit values are xi and yi (i from 1 to m 

inclusive). It is also necessary to calculate the arithmetic mean values of both sequences of 

samples. 

Counting the coefficients for all possible pairs of channels of the same image, we build 

the coding sequence - naturally, starting from larger values to smaller ones. 

1 The Construction of the correlation matrix of AI channels. 

2 Build a highly branching tree to determine the sequence of channel conversion 

depending on the correlation value using the Pearson correlation calculation formula. 

3 Formation of the hyperspectral AI processing sequence for step 1.2, necessary for AI 

recovery. 

Example. There is a 12-channel GI, respectively, the index tree will contain 11 vertices, 

we will build them in the correlation table, table. 1. From table 1 it is seen that the 

interchannel correlation increases, starting from channel 5. This suggests that the channels 

whose indices lie in the range [4-11] have a high correlation dependence, the maximum 

correlation value between channel 10 and 11. 

Table 1. Correlation matrix of selected channels for compression 
 0 1 2 3 4 5 6 7 8 9 10 11 

0 1 0,35 0,29 0,3 0,23 0,23 0,22 0,23 0,22 0,23 0,22 0,23 

1 0,35 1 0,34 0,34 0,3 0,27 0,29 0,29 0,28 0,29 0,29 0,3 
2 0,29 0,34 1 0,6 0,56 0,51 0,53 0,52 0,5 0,5 0,49 0,49 

3 0,3 0,34 0,6 1 0,89 0,85 0,85 0,85 0,82 0,81 0,8 079 

4 0,23 0,3 0,56 0,89 1 0,95 0,95 0,95 0,95 0,92 0,92 0,9 
5 0,23 0,27 0,51 0,81 0,95 1 0,97 0,97 0,97 0,96 0,95 0,95 

6 0,22 0,29 0,53 0,85 0,95 0,97 1 0,985 0,983 0,978 0,972 0,968 

7 0,234 0,29 0,52 0,845 0,945 0,975 0,985 1 0,990 0,981 0,984 0,982 
8 0,23 0,29 0,50 0,82 0,935 0,970 0,983 0,990 1 0,992 0,991 0,988 

9 0,23 0,29 0,50 0,81 0,924 0,963 0,978 0,989 0,992 1 0,995 0,994 

10 0,224 0,295 0,491 0,803 0,912 0,955 0,972 0,984 0,991 0,995 1 0,996 
11 0,23 0,30 0,499 0,798 0,907 0,950 0,968 0,982 0,988 0,994 0,996 1 
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3.1 Based on the constructed correlation matrix, we construct the L tree of indices - 

these are ordered pairs of channels (for example, channels numbered 10 and 11). Let there 

be 11 pairs and 11 vertices of the tree. Channel 12 under index [11] is converted through 

the first vertex of the tree [# 0] (the numbering of vertices and indices starts from zero), 

Channel 10 under index [9] is converted through the second vertex [# 1], Channel 9 under 

index [8] is converted through the third peak [# 2], etc., fig. 1. 

3.2 Formation of a sequence of pairs: 

Step 1. Find the maximum element among the available pairs in the correlation 

matrix, form the first pair of channels. 

Step 2. We put in a set of ordered pairs (SOP) a new pair of channels. 

Step 3. We remove from the table of the correlation matrix all pairs whose elements 

are already defined in the SOP. 

Step 4. While all the elements are not in the SOP, we return to step 1. 

 
#0 10 -> 11 

#1 10 -> 9 

#2 9 -> 8 

#3 8 -> 7 

#4 7 -> 6 

#5 7 -> 5 

#6 6 -> 4 

#7 4 -> 3 

#8 3 -> 2 

#9 3 -> 1 

#10 1 -> 0 

     а)             b) 
Fig. 1. The tree of correlated channels: 

a) the set of ordered pairs, b) the sequence of ordered pairs 

 

2.2. Regression (regression) transformation 
 

The essence of the transformation is to bring into conformity to the encoded pair of 

channels some structure that would: 

1) allowed to unambiguously restore one of the source channels according to the data of 

another channel, 

2) occupied as little disk space as possible. 

The subtracted channel is converted using the linear regression equation (LRE) as an 

example. The generalized form of the transformation will be like this. 

LRE - “Y = a x+b”. Y are unknown values, x are the values of the main channel, y are 

the values of the second channel, we find а and b: 

1) we find a - coefficient by intermediate calculations; 

2) we find b - coefficient by subtracting the average of y and the available coefficient а; 

3) calculate Y = a x+b. where x  - values of the main channel, found LRE. 

For example, the value of the generating channel x is equal to 918, y - the value of the 

second channel is 1312. Between the channels there is a weak correlation of 0.3636 (the 

difference between the channels x and y = 394), the coefficients а = 0.49, b - 784.01 are 
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found. Then Y = 1233. The difference is d = y – Y = 79. The value is 79 <394 and requires 

fewer bits to store them. 

We apply this type of generalization of LRE to hyperspectral AI. The coefficients of the 

constructed regression model Yi=a x+b for the generating channel were determined. 

The idea of linear regression in our case is to find such real values a and b such that the 

matrix formed from the data of the encoded pair by the following formula: 

( )ij ij ijd x a b y    , (hereinafter, xij and yij are the values in the matrices master and slave, 

respectively) would have in itself the smallest possible values. Below we will call the 

matrix d with the values dij the “difference matrix”. A sufficiently good linear correlation 

index (close to unity), calculated previously, leads to rather low values of dij. Knowing the 

values of a, b and the matrix d, we can restore the matrix y from the values of the matrix x: 

( )ij ij ijy x a b d     

The standard formulas used to calculate linear regression parameters are: 

 

2

2 2 2 2
, ,

( ) ( )

xy x y x y x xy
a b

x x x x

    
 

 
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i j i j

xy x y x x
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(m - image height, n - width). 

In each slave channel we put the values  a and b in the Double format (8 bytes, 15 

decimal places in decimal format). Encoding the only main generating channel (generating 

the channel of the first pair) for the image, independently of the others, we can 

subsequently restore it first, then gradually restore all other compressed channels (as 

mentioned earlier, through the coefficients a and b). 

The absence of losses during the conversion is ensured as follows. After receiving the 

matrix d and before writing it to the file, we round off the values to the nearest integer (in 

the case of a fractional part equal to 0.5, to a smaller integer). This does not prevent lossless 

recovery. Let’s explain why. Let's pay attention to the formula: ( )ij ij ijd x a b y    . 

The matrices x and y are integer; therefore, the quantity has the same fractional part (we 

denote it by q) as the number dij before rounding. We will denote the integer part of 

numbers by square brackets, the fractional by curly brackets. So q = {dij} = {wij}. After 

rounding, rounded values are written to the difference file. We proceed to recovery: 

 
' ' '( ) ( )ij ij ij ij ij ijy x a b d d y d        

' '( ) 1 (1 )ij ij ij ij ij ijy d y d q y y q         . 

 

The value of wij remains unchanged, since a and b were previously calculated and 

recorded in the Double format (that is, without loss), the values of x are integer and do not 

undergo losses. 

If q <= 0.5, то 
' [ ]ij ijd d  and:   

' '( )ij ij ij ij ijy d y d q y     . 

So, rounding, we get the initial value yij. 

If q > 0.5, то  
' [ ] 1ij ijd d  , and: 

' '( ) 1 (1 )ij ij ij ij ij ijy d y d q y y q          

 , 0 (2020) https://doi.org/10.1051/e3sconf /20201490E3S Web of Conferences 149 0

RPERS 2019
20 2003 3

5



The value (1 - q) <= 0.5, а yij is an integer. It also means: rounding, we get the initial 

value yij. 

Thus, regression conversion does not incur losses. To reverse decode hyperspectral AI, 

we perform the following steps: 

Step 1. Decoding arrays of differences by the Huffman algorithm. 

Step 2. Formation of regression transformation arrays by finding the sums between the 

generating channel and its average value. 

Step 3. Formation of the initial arrays based on the available coefficients of HRM and 

obtaining the initial data of hyperspectral AI. 

 

3 Experimental researches 
 

To determine the effectiveness of the proposed algorithm from the point of view of the 

degree of compression, as well as the limits of its applicability, a number of experiments 

were carried out on hyperspectral AI (Aviris remote sensing system), in table. 2. 
 

Table 2. Hyperspectral AI Test Data 

Count 

bands 

Size 

 

Size 

 (byte) 

Count bands Size 

 

Size 

 (byte) 

100 100*100 4080400 200 100*100 8160800 

100 200*200 16160400 200 200*200 32320800 

100 300*300 36240400 200 300*300 72480800 

100 400*400 64320400 200 400*400 128640800 

100 614*512 125747200 200 614*512 251494400 

150 100*100 6120600 224 100*100 9140096 

150 200*200 24240600 224 200*200 36199296 

150 300*300 54360600 224 300*300 81178496 

150 400*400 96480600 224 400*400 144077696 

150 614*512 188620800 224 614*512 281673728 

 

Conclusion 
 

1. The lossless compression algorithm taking into account inter-band correlation and 

regression analysis allows to increase the compression ratio to (D>8)than in the use of 

universal archivers. 

2. The proposed approach for finding the best channel groups for a given correlation 

value increases the efficiency of the application of the difference transformation stage. 

3. The obtained experimental results show the effectiveness of the application of the 

stages of regression conversion and parallel processing, which allow to obtain advantages 

compared to analogues 
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