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Abstract. This paper presents a new probabilistic forecasting model of the hourly mean power production 

in a Photovoltaic (PV) plant. It uses the minimal information and it can provide probabilistic forecasts in the 

form of quantiles for the desired horizon, which ranges from the next hours to any day in the future. The 

proposed model only needs a time series of hourly mean power production in the PV plant, and it is 

intended to fill a gap in international literature where hardly any model has been proposed as a reference for 

comparison or benchmarking purposes with other probabilistic forecasting models. The performance of the 

proposed forecasting model is tested, in a case study, with the time series of hourly mean power production 

in a PV plant with 1.9 MW capacity. The results show an improvement with respect to the reference 

probabilistic PV power forecasting models reported in the literature. 

1 Introduction  

The global capacity of power plants based on renewable 

energy sources connected to the electric grids has grown 

strongly in recent years. The technical, economic and 

social benefits that these plants provide, together with 

government policies promoting their integration, have 

made this growth possible. The expected primary energy 

supply by 2050 will be covered by a mix of renewable 

sources, with the solar Photovoltaic (PV) energy as the 

most important with a 69% [1]. 

The integration of large PV plants with capacity of 

tens of MW makes that these facilities must participate 

as any other power producer in the electricity markets. 

The participation basically involves the submission of 

generation bids for the hours or periods covered by a 

market session. In most of the electricity markets the 

most important session is the daily or day-ahead session. 

If the schedule contained in the generation bids is not 

met, the PV power producer can be penalized with a 

lower retribution to that fixed in the market session. In 

order to achieve the maximum economic profit, the PV 

power producer must submit bids with hourly generation 

values as close to the actual ones as possible.  

PV power generation depends on weather variables 

such as solar irradiance, temperature, humidity and cloud 

cover. The variability of these weather variables makes 

that power production changes at any moment. Since PV 

power generation is not controllable, a PV power 

producer needs a short-term forecasting (STF) model to 

prepare bids to the electricity market. Also, the forecasts 

provided by the model can be useful for other purposes, 

such as scheduling maintenance tasks. On the other hand, 

other agents, as the Transmission System Operators, can 

need short-term PV power generation forecasting models 

to foresee values that could be critical in order to 

maintain the stability of the system. 

An important research effort has been carried out in 

the last two decades with the development of short-term 

forecasting models for power plants based on renewable 

resources, mainly wind farms and PV plants. Most of the 

short-term PV power forecasting models reported in the 

international literature provide only forecasts of the 

power production, that is, only the expected values. 

These models are known as deterministic models. An 

overview of the techniques used in short-term PV power 

forecasting models can be found in [2, 3]. Deterministic 

forecasting models provide a poor output, only the 

expected value, and since there are not error-free 

forecasting models, they do not provide information on 

how to quantify such error (difference between the 

forecasted value and the future real value). 

Probabilistic forecasting models (PFMs) outperform 

deterministic ones by providing information about the 

uncertainty associated with the forecast. Moreover, they 

become an important tool because a probability 

distribution is needed for risk-based decision making [4]. 

Short-term PV power PFMs have a young history. One 

of the first PFMs [5] is derived from a deterministic one 

using weighted quantile regression conditioned to a 

clearness index to produce probabilistic forecasts. A 

prediction interval approach for the global irradiance is 

described in [6], which can be used to estimate the 

maximum deviation of the real power from the 

forecasted values for different weather conditions. The 

use of ensembles from Numerical Weather Prediction 

tools is proposed in [7]; an ensemble corresponds to a set 

of deterministic forecasts of weather variables obtained 
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with slightly different initial conditions. An ensemble 

approach using the deterministic forecasts of seven 

different machine learning algorithms is presented in [8] 

assuming normal distribution for the forecast errors. In 

[9] the authors propose a method based on the analog 

ensemble approach, that is, a set of past cases with 

“similarity” to the recent ones. A nonparametric 

approach to obtain the density forecast is presented in 

[10]. The effect of the aggregation of time series of 

electricity load and the increasing share of PV power in 

the net load is evaluated in [11] by means of prediction 

intervals (PIs) in local electricity distribution grids. 

Most of the reported forecasting models contrasts 

their prediction results with those obtained with at least 

one reference or baseline model. The most widely used 

reference model for deterministic forecasting is the so-

called persistence model, however there is no accepted 

common reference model for PFMs.  

In this paper we propose a PFM that could be used as 

a reference model in a similar manner as the persistence 

model is used to evaluate deterministic forecasting 

models. The proposed PFM uses minimal information 

and it can provide forecasts of the hourly PV power 

generation for any forecasting horizon. 

The structure of the paper is as follows: section 2 

presents existing work in reference PFMs of hourly PV 

power generation; section 3 describes the proposed 

model; section 4 presents the computational results 

obtained with the proposed model in a case study with a 

real PV plant; finally, section 5 presents the conclusions. 

2 Probabilistic forecasting reference 
models  

A recent work [12], describing guidelines for the 

presentation and evaluation of newly contributed 

forecasting models, advices the use of solid benchmarks 

against which the new proposed models must be tested 

empirically. Benchmarking is the process of comparing 

the forecasting results obtained with the new model with 

those obtained from reference models. The first 

reference model is the persistence one, which is a 

deterministic forecasting model. 

The persistence model is one of the simplest methods 

used to forecast future values of a time series. It assumes 

that the conditions are the same at the current time 

(moment when the forecasts are produced) and at the 

future time. It has been used frequently as a reference 

model for comparison purposes (or benchmarking) in 

energy forecasting applications (load, wind power, 

electricity prices, etc.). For solar forecasting applications 

(irradiance or PV power), with an intraday horizon, the 

fraction of the power output relative to the clear-sky 

conditions is the variable that it considered to maintain 

the same value at the current time and at the future time 

[13]. For applications with longer forecasting horizon, 

the persistence model assumes that the PV power 

production at a specific hour in the future is the same 

that the last known value at the same hour of the day. 

The evaluation of deterministic forecasting models is 

performed using a set of indicators. The two most 

common indicators are the well-known Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE). 

A new prediction model, if it has something of predictive 

value, should improve the values of the indicators 

achieved by the reference models. 

The main characteristics of a probabilistic forecast 

are accuracy, reliability, and sharpness. Since PFMs are 

more complex (in term of characteristics) than the 

deterministic ones the comparison of two PFMs models 

is difficult and a compromise must be met between the 

three characteristics. Several skill scores have been 

proposed in the international literature. The Continuous 

Ranked Probability Score (CRPS) is the skill score that 

evaluates jointly the accuracy, the reliability and the 

sharpness of the probabilistic forecasts; it is the most 

common skill score used in probabilistic weather 

forecasting [14]. 

A simple PFM is the climatological forecasting 

model. Applied to the PV power forecast, for each future 

hour it creates an ensemble with generation values from 

the past (it could be from all the available data, from the 

same day in the past, from the same month, etc.) 

corresponding to the same hour. The probabilistic 

forecasts are produced empirically from the elements in 

each ensemble (for each hour). 

Although for deterministic forecasting the persistence 

model is considered as the first reference or baseline 

model, for probabilistic models there is not a reference 

model widely accepted. Alexandrini et al. [9] propose a 

PFM as a baseline for the STF of the hourly power 

production in several PV plants. They use a model called 

“Persistence Ensemble” (PeEn), which is formed with 

the 20 most recent measured PV power generation 

values at the same hour, that is, in the previous 20 days. 

In other work [15] the same authors use the PeEn, but 

now with 51 members (51 most recent values at the same 

hour). The number of elements in the ensembles is 

vaguely justified. 

Zamo et al. [7] use as reference model a simple 

climatological forecasting defined as the quantile sets 

computed with the measured PV generation in the 

training data from dates with the same month that the 

corresponding to the future time. Thus, there are 12 

reference models, one for each month of the year. 

In the forecast of the solar irradiance Yang [16] 

proposes as reference model the “complete-history 

persistence ensemble” (CH-PeEn). This ensemble is 

composed of all historical clear-sky index measurements 

that share the same time of day. The model is proposed 

in order to avoid the subjective choice in the number of 

members in the ensemble. Since it uses all the historical 

measurements, it presents similarities with the 

climatological model, although it corrects the resulting 

distribution by multiplying it by the clear-sky global 

horizontal irradiance expectation to obtain the solar 

irradiance probabilistic forecast.  

The model presented in this paper differs from those 

using the PeEN or the CH-PeEn, since it selects the 

elements for the ensembles using an exploration window 

which width is chosen according to the results obtained 

with the data of previous years: the width of the window 

which offers the best value of the selected skill score 
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with the data of previous years, is used to provide the 

forecasts in the recent one. Moreover, the model 

proposed can be used for any horizon, offering 

probabilistic forecasts, in the form of quantiles, for any 

day in the future.  

The purpose of this model is to be used as a reference 

to check the performance of other forecasting models. It 

uses the minimal information, just only the time series of 

hourly power production in the PV plant. Therefore, it 

could be considered as the probabilistic equivalent to 

deterministic persistence model. 

3 Proposed probabilistic reference 
model 

The base of the proposed PFM for the hourly power 

generation in a PV plant is the following: suppose we 

want to forecast the PV power generation for the hour h 

of day d of the year. In that moment the sun will have a 

position in the sky very similar to the one it had, at the 

same hour, in the days previous to that day d. Moreover, 

the position of the sun in that moment will be very 

similar to the corresponding to the hour h of days close 

to the day d but in previous years. Since the position of 

the sun is almost similar, very similar values of power to 

those of the past can be expected for the hour h of the 

day d in the current year or in a future year. So, the idea 

is to collect these similar power values from the past to 

form an ensemble from which calculate the probabilistic 

forecast. Obviously, the forecasts will depend on the 

number of members in the ensemble, that is, on the 

definition of days close to day d. 

The starting point for the development of the 

proposed model is a time series with historical hourly 

generation data of the PV plant. This series will 

constitute the training data set (there is not a training 

process, but we use that name because the structure of 

the ensemble is selected with that data set). The 

proposed PFM for the hourly power production in a PV 

plant provides, as probabilistic forecasts, a quantile set 

(quantiles 0.05 to 0.95 in 0.05 steps) computed with the 

measured PV generation values in the training data from 

days in other years close to the day corresponding to the 

future time. The selection of the close dates is carried out 

by means of a window with the proper width centred on 

the same day d of previous years in the training data. The 

performance of different window widths is evaluated 

with the training data, and the width of the window that 

offers the best probabilistic error is selected to provide 

the probabilistic forecast for the future time. 

Suppose we have a time series of power generation 

values in a PV plant composed of the hourly data in n 

years. In order to produce the probabilistic forecasts for 

all the daylight hours of tomorrow (day d of the year), 

the procedure would be as follows: 

1. The day d of the first year is selected from the 

training data set. For each of the daylight hours, the 

PV power generation values for the day d and days 

within a window centred on them (days d-wy to d+wy) 

from the rest of the years are chosen. Thus, for each 

hour of day d of the first year there is a set (ensemble) 

of values with power generations in similar hours in 

the training data set. The process is repeated for all 

the days d of the other years, so it is obtained an 

ensemble of power generation values for each of the 

daylight hours of all the days d of the different years 

in the training data set. Each ensemble has 

(2·wy+1)·(n-1) elements. 

2. With the data of each ensemble (for each of the 

daylight hours of the n days selected in stage 1) the 

cumulative distribution function is calculated 

empirically obtaining afterwards 19 quantiles, from 

0.05 to 0.95 in 0.05 steps. 

3. Stages 1 and 2 are repeated with different window 

widths (wy values). The wy value that achieves the 

lowest CRPS with the n days (days d) belonging to 

the training data set is selected. 

4. A similar process to the described in stage 1 is 

carried out again with the days d of the previous n 

years but considering now windows that only select 

previous days, that is, days from d-1 to d-wr, where 

wr is the width of this second window. Now, the 

number of elements in each ensemble is wr because 

only values from the same year are selected. 

5. The cumulative distribution function is calculated 

with the new ensembles obtained in stage 4, and the 

19 quantiles obtained. 

6. Stages 4 and 5 are repeated with different values of 

wr, and it is selected the value of wr which achieves 

the lowest CRPS with the daylight hours of the n 

days belonging to the training data set. 

At the end of stage 6, the width of two windows used 

to select the members of the ensembles for each daylight 

hour have been chosen: the first one used to select values 

from previous years (window with total width of 2·wy+1) 

and the second to select values from the current year 

(window with width wr). Now, both windows are 

applied jointly in order to select the members in the 

ensembles used to empirically obtain the quantiles for 

the probabilistic forecast for each hour of the future day 

(day corresponding to the current day plus the 

forecasting horizon). The total number of members in 

each ensemble is (2·wy+1)·n+wr-ho, where ho 

represents the forecasting horizon in days (the most 

recent ho-1 days are not considered since they belong to 

the future at the time the prediction is carried out). 

4 Case study 

The proposed probabilistic STF PV power generation 

model has been applied to a PV plant composed of two-

axis solar trackers. The capacity of the PV plant is 1.9 

MW and it is located in the north of Spain. A time series 

with the hourly production for 2.5 years were available 

(from 01/10/2008 to 31/03/2011). This was the longest 

hourly PV power generation time series we had at our 

disposal. No outlier or missing value was found in such 

time series. 

In order to evaluate the performance of the proposed 

model, the available data were divided into two sets. The 

first one with the data of the two first years (from 

01/10/2008 to 30/09/2010) was used as the training data 
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set. The second with the data of the last six months (from 

01/10/2010 to 31/03/2011) as the testing data set. 

The proposed PFM aims to forecast the hourly mean 

power production in the PV plant. In the context of this 

paper, the forecasts are carried out at any moment 

between the sundown of the day d-1 and the beginning 

of day d, and they correspond to the hourly mean power 

generation in the PV plant for all the hours of the future 

day. The probabilistic forecasts are formed by 19 

quantiles for each daylight hour, from quantile 0.05 to 

quantile 0.95 in 0.05 steps. The quantile 0.5 is used as 

the deterministic forecast, for comparison purposes with 

the persistence model. 

The methodology with 6 stages presented in the 

previous section was applied to all the days in the testing 

data set with forecasting horizons covering from 1 to 7 

days. Also, a forecasting model with undetermined 

horizon was developed following only stages 1 to 3 (that 

is, using only data in the ensembles corresponding to 

previous years). In the selection of the windows only 

data from the training data set were used.  

First, we will present the deterministic forecasting 

results where the forecasts provided by the proposed 

model correspond to the quantile 0.5 for each hour. 

Table 1 shows the results obtained with the deterministic 

persistence model with the data of the testing set. In this 

case, the forecast of the hourly power generation at hour 

h of day d is the same that the actual power in the 

previous day (or the last known day for longer 

forecasting horizons), and the RMSE and MAE are 

expressed in the row “Day d” (note that the forecast 

process is carried out in the last hours of day d-1). The 

results shown in the row “Any day in future” correspond 

to the RMSE and MAE obtained using as forecast for 

each hour in the testing data set the mean value of PV 

power generation at the same hour in all the days in the 

training data set. 

Table 1. RMSE and MAE for the deterministic persistence 

model in the testing data set. 

Horizon RMSE (kW) MAE (kW) 

Day d 615.52 414.75 

Day d +1 651.68 449.75 

Day d +2 693.34 495.79 

Day d +3 729.31 527.80 

Day d +4 742.10 542.95 

Day d +5 714.83 521.29 

Day d +6 712.65 515.67 

Any day in future 738.56 642.60 

 

Table 2 shows the results obtained using the 

proposed PFM as a deterministic model, that is, using 

the value forecasted for the quantile 0.5 as the expected 

value of the PV power generation. The RMSE and MAE 

are lower than the obtained with the persistence model 

with improvements between 13.7% and 28.1% 

depending on the forecasting horizon. Notice that the 

proposed model achieves better deterministic results 

with any horizon in the future (forecasting horizon 

longer than seven days) than the persistence model with 

a forecasting horizon of only one day. 

Table 2. RMSE and MAE for the proposed model in the 

testing data set. 

Horizon RMSE (kW) MAE (kW) 

Day d 530.95 403.36 

Day d +1 533.04 405.05 

Day d +2 535.19 407.61 

Day d +3 536.75 407.51 

Day d +4 533.42 404.34 

Day d +5 533.29 404.21 

Day d +6 535.05 405.46 

Any day in future 571.72 424.94 

 

The average widths of the windows for the testing 

data set were 28.75 days for wy and 26.48 days for wr. 

Table 3 shows the probabilistic forecasting indicators 

achieved with the proposed forecasting model and other 

three models proposed as reference in other works. 

Table 3. Probabilistic results for the day-ahead. 

Model 
CRPS 

(kW) 
RMSD  

RMSE 

(kW) 

PeEn 20 263.26 18.26 559.80 

PeEn 51 271.75 28.08 550.97 

Climatological 413.33 30.80 738.56 

Proposed model 255.75 13.42 530.95 

 

As shown in Table 3, the proposed model 

outperforms the probabilistic results obtained with the 

PFMs used as reference models in other works. The 

“PeEn 20” (20 members in the ensemble) corresponds to 

the reference model proposed in [9], the “PeEn 51” 

corresponds to the reference model proposed in [15] and 

the “climatological” corresponds to a PFM computed 

using all the PV power values in the training data set. 

The error indicators expressed in Table 3 are the CRPS 

(in order to assess the reliability and sharpness of the 

probabilistic forecasts, where a lower value indicates a 

better performance), the RMSD (in order to evaluate the 

spread of the forecast) and the RMSE (for the 

deterministic performance). The proposed model 

achieves better results for all the indicators than the 

obtained with the other three PFMs used as reference. 

The RMSD values expressed in Table 3 correspond 

to the root-mean-square deviation from complete 

histogram flatness [17]. This indicator is used to asses 

the flatness of a rank histogram. The rank histogram is a 

common tool for meteorologists, who use it to quantify 

the reliability of a probabilistic forecast, that is, if the 

probabilistic forecast represents the true distribution of 

the predicted variable. The underlying assumption is that 

a probabilistic forecast is indistinguishable from the 

verifying observations (future true values) if these 

observations fall with an equal probability in segments 

or "bins" of the predicted variable. A rank histogram is 

drawn dividing the probabilistic forecast into N+1 

segments of equal probability. In a good rank histogram 

true observation will fall with an equal probability in 

each of the N+1 segments, what corresponds to a flat 

diagram. The RMSD tries to evaluate the deviation from 

the flatness (in the rank histogram) and it expressed by 

4

E3S Web of Conferences 152, 01002 (2020) https://doi.org/10.1051/e3sconf/202015201002
PEEE 2019



equation (1), where N+1 is the number of segments with 

equal probability, M is the total number of observations, 

and sk is the number of observations in each particular 

segment. For our case study, we define 20 segments with 

0.05 probability (the segments are limited by the 19 

calculated quantiles), and the total number of 

observations is 2050 (all the daylight hours in the testing 

data set). A lower value of RMSD indicates a better 

spread of the probabilistic forecasts. 
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Fig. 1. Rank histogram for the testing data set. 
 

Figure 1 plots the rank histogram corresponding to 

the probabilistic forecasts of all the daylight hours in the 

testing data set for a forecasting horizon of 1 day. The 

rank histogram is almost flat denoting a good spread in 

the forecasts (with a RMSD value of 13.42 cases). The 

red line denotes the ideal count of cases for each 

segment (5% of the 2050 hours in the testing data set).  

Figure 2 plots the probabilistic forecasts for the 

daylight hours of five days in the testing data set with a 

forecasting horizon of 7 days. The days represented in 

the figure are from 12/12/2010 to 16/12/2010 and the 

forecast is carried out with data corresponding to, at least, 

7 days before. In the figure are represented the quantiles 

0.05, 0.25, 0.5, 0.75 and 0.95, and the real value.  
 

 

Fig. 2. Probabilistic forecast for five days in the testing data set 

with a forecasting horizon of 7 days. 

5 Conclusions 

 

A new PFM for PV power generation has been proposed 

in order to serve as reference model for benchmarking 

purposes. The model uses only past values of PV power 

generation and achieves better results than other 

reference PFM reported in the literature. 

Further research works are underway to validate the 

proposed model with data from other PV plants and to 

enhance its forecasting performance including elements 

as ageing coefficients that could better adapt the power 

production from the past to the present. 
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