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Abstract. This paper presents an original probabilistic photovoltaic (PV) power forecasting model for the 

day-ahead hourly generation in a PV plant. The probabilistic forecasting model is based on 12 deterministic 

models developed with different techniques. An optimization process, ruled by a genetic algorithm, chooses 

the forecasts of the deterministic models in order to achieve the probability distribution function (PDF) for 

the PV generation in each one of the daylight hours of the following day in a parametric approach. The 

PDFs, which constitute the probabilistic forecasts, are a mixture of normal distributions, each one centred in 

the forecasts of the selected deterministic models. The genetic algorithm chooses the deterministic forecasts, 

the variance of the normal distributions and their weights in the mixture. In a case study the proposed model 

achieves better forecasting results than the obtained with the conditional quantile regression method applied 

to the same data used to develop the deterministic forecasting models.  

1 Introduction  

The development of environment-friendly and 

sustainable power generation systems has led to an 

increasing penetration of photovoltaic (PV) power in the 

electricity grids.  Currently, the annual growth of global 

solar PV capacity is greater than all other renewable 

power technologies combined. Global PV capacity is 

expected to reach 1TW by the end of 2023 [1]. 

PV power generation is characterized by a 

significative variability even in short time periods since 

it depends on very varying weather variables as solar 

irradiance, temperature, wind velocity, cloud cover, etc. 

A secure large-scale integration of solar PV generation 

in the electric grids requires the availability of PV power 

generation forecasting models. On one hand, short-term 

forecasts of the PV power generation are suitable for 

Transmission System Operators for regulating and 

dispatching tasks. On the other hand, PV power 

producers can use short-term forecasts to prepare bids to 

the electricity markets or to schedule maintenance tasks. 

The development of accurate forecasting models for 

energy sector has been an active scientific field in recent 

years. Two kind of forecasting models can be identified 

according to the nature of the forecast: deterministic (or 

point forecast) and probabilistic models. Deterministic 

forecasting models (DFMs) offer as forecast the 

expected future value for the variable of interest while 

probabilistic forecasting models (PFMs) provide 

information regarding to the uncertainty in the forecast. 

DFMs were the first to be developed, while PFMs are 

more recent. The most mature subdomains in the energy 

forecasting sector are the deterministic short-term load 

forecasting and the probabilistic wind power forecasting. 

Solar power forecasting is identified as a subdomain 

with great progress in the next years [2]. 

Most of the published works related to PV power 

forecasting correspond to DFMs. Two kind of 

approaches have been used: statistical and machine 

learning methods. Das et al. [3] present a complete 

summary of the techniques used in PV power forecasting 

models. The development of PV power PFMs is now in 

its first stage, following in many cases the trail left by 

the development of this type of models in the wind 

energy subdomain. 

PFMs can provide as output interval forecasts 

(prediction intervals) or density forecasts (forecasts of 

probability distribution function for the desired variable). 

The prediction intervals can help to the agents of an 

energy market to trade with low risk, although a density 

forecast provides a more flexible and complete 

prediction. A PFM can be fit using several techniques 

such as distribution-based forecasts, bootstrapped 

prediction intervals or quantile regression averaging. In 

this work we have focused on the distribution-based (or 

parametric) forecast due its easy interpretation and its 

low computing requirements. 

The basis for the distribution-based forecasts is the 

assumption of the Gausssian noise in the residuals of 

some deterministic time series models as AR, ARIMA, 

etc. A PFM can easily be constructed from a 

deterministic model using this approach. Dudeck [4] 

presents an example of PFM for electricity price forecast: 

A Multilayer Perceptron (MLP) neural network 

constitutes the deterministic model and the probability 

forecasts are obtained from the deterministic forecasts 
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and the error distribution on the training data set. Fatemi 

et al. [5] present a PFM for solar irradiance based on the 

deterministic forecast provided by a linear least mean 

square error estimator and beta or two-sided power 

distributions to obtain probabilistic forecasts. Bracale et 

al. [6] use Bayesian inference, Monte Carlo simulation 

and a modified Gamma distribution to develop a PFM 

for the hourly power generation in a PV plant.  

A more sophisticated distribution-based approach 

using an ensemble of deterministic models is presented 

in [7]. The authors use seven PV power DFMs based on 

different machine learning techniques to form an 

ensemble. Quantiles for the probabilistic forecasts are 

obtained using three methods (linear method, normal 

distribution method and normal distribution method with 

additional features) using the forecasts of the seven 

DFMs.  

The PFM proposed in this paper is based on 12 PV 

power DFMs. These DFMs were developed using 

diverse techniques, although all using the same training 

and testing data sets. Also, as a requirement, the training 

process of the 12 models (if required) was carried out 

with a cross-validation scheme with 5 folds in order to 

minimize overfitting. The proposed PFM provides the 

probability distribution function (PDF) for each daylight 

hour in the following day. 

The inner structure of each of the deterministic 

models and their characteristics is out of the scope of this 

paper, which is focused on the construction of a PFM of 

the PV power generation from a set of DFMs with 

different characteristics and forecasts. This could be the 

requirement of some PV plant managers, who receive 

deterministic forecasts from different service providers 

(forecasting services), without knowing anything about 

the models that generate the forecasts. The proposed 

PFM obtains probabilistic forecasts, which could be of 

interest to assess the risk in decision-making issues, 

outperforming in this aspect to the DFMs, but also 

improving their own deterministic forecasting results. 

The structure of the paper is as follows: section 2 

describes briefly the 12 DFMs; section 3 presents the 

optimization process used to obtain the proposed PFM; 

section 4 presents the computational results obtained 

with the proposed model in a case study with data of a 

real PV plant; finally, section 5 presents the conclusions. 

2 Deterministic forecasting models  

The proposed model is based on the forecasts of 12 

deterministic PV power forecasting models based on 

different techniques. The forecasts provided by the 

DFMs can be very different since, depending on the data 

used in their training or adjustment, they can 

“specialize” to achieve the lowest forecasting error over 

different ranges of the input variables. Therefore, the 

ensemble may contain better predictions than those of 

any DFM. The models were developed and trained 

independently, although all of them use the same input 

or explanatory variables. Table 1 shows the list of the 

explanatory or input variables used to build the DFMs. 

Many of the input variables correspond to weather 

forecasts obtained from a numerical weather prediction 

model. The weather forecasts are the forecasted hourly 

values for all the daylight hours of the following day. 

The output variable for all the models is the hourly 

power generation in a PV plant for the daylight hour h of 

the following day. 

Table 1. Explanatory variables for the DFMs. 

Name  Description 

temp Temperature at 2 meters (Kelvin) 

swflx Surface downwelling shortwave flux (W·m-2) 

mod Wind module at 10 meters (m/s) 

dir Wind direction at 10 meters (degrees) 

rh Relative humidity at 2 meters (per unit) 

cft Cloud cover at low and medium levels (per unit) 

cfl Cloud cover at low level (per unit) 
cfm Cloud cover at medium level (per unit) 
cfh Cloud cover at high level (per unit) 

prec Accumulated rainfall in the hour (kg·m-2) 

clear Clear-sky global horizontal irradiance (W·m-2) 

aghi Average global horizontal irradiance (W·m-2) 

aip Average irradiance on panel (W·m-2) 

h1 Cosine of the day fraction for the hour h 

h2 Sine of the day fraction for the hour h 

 

The explanatory variables of Table 1 include 

forecasts of weather variables (temp, swflx, mod, dir, rh, 

cft, cfl, cfm, cfh, prec and clear) for the future hour h of 

the following day. Two other input variables correspond 

to calculated values (aghi and aip). The variable aghi is 

the average value of swflx (which corresponds to the 

global horizontal irradiance) and aip is the average value 

of the irradiance on the PV panel throughout the hour h. 

This last variable (api) is calculated, considering the 

solar geometry and the type of PV panel (fixed, one-axis 

tracker or two-axis tracker), as the sum of the direct 

normal irradiance (DNI) and the total diffuse irradiance 

on the tilted surface of the PV panel. The DNI is 

estimated by applying the Erbs model [8] to the 

forecasted swflx value and the total diffuse irradiance is 

estimated by means of the King model [9]. The last two 

variables (h1 and h2) are used to code the hour h.  

The list of DFMs of the hourly PV power generation 

is the following: 

1. Bayesian additive regression trees (Bart) [10]: A sum 

of trees model with prior regularization and Bayesian 

backfitting. 

2. Bayesian Lasso regression averaged model (Blasso) 

[11]: A linear L1 regularization model. 

3. Bayesian ridge regression model (Bridge): A linear 

L2 regularization model. 

4. Bayesian regularised feed-forward neural network 

(Brnn) [12]: A neural network with one hidden layer 

and regularization with a Bayesian approach. 

5. Cubist model (Cubist) [13]: A rule-based model with 

an associated multivariate linear model to each rule. 

6. Extreme learning machine (Elm) [14]: A neural 

network with a single hidden layer trained with the 

Elm algorithm. 

7. Elastic net model (Enet) [15]: A linear model with 

regularization and variable selection. 
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8. Generalized boosted regression model (Gbm) [16]: 

Ensemble of decision trees with a stage-wise model 

by optimizing the loss function. 

9. Least angle regression model (Lars) [17]: Linear 

regression model with feature selection. 

10. M5rules model (M5rules) [18]: non-parametric 

model with propositional regression rules extracted 

from model trees. 

11. Projection pursuit regression model (Ppr) [19]: 

projection of input data into a low dimensional 

subspace. 

12. Quantile regression neural network (Qrnn) [20]: non-

linear quantile regression with a single hidden layer 

neural network. 

The models are adjusted or trained using 5-folds 

cross-validation. The value of tuning parameters, if 

needed, is selected according to the lowest average root 

mean square error (RMSE) with the 5 folds used as 

testing sets. 

3 Proposed probabilistic model 

Our parametric approach is based on a mixture of normal 

distributions as the PDF of the PV power generation. 

Normal distribution is defined by two parameters, the 

mean and the standard deviation. The values of these two 

parameters are necessary for each member (distribution) 

in the mix. Figure 1 plots the PDF of a mix of four 

normal distributions; each distribution has its mean and 

standard deviation values. In order to form the PDF of 

the mix, another parameter is needed for each member, a 

weighting factor. The sum of the weighting factors of all 

members in the mix must be equal to 1. Note that the 

PDF of the mixture in the figure isn’t Gaussian shaped. 

 

Fig. 1. PDF of a mix of four normal distributions. 
 

The basic idea of the proposed model is to obtain the 

PDF of the hourly PV power generation in a PV plant as 

a mixture of normal distributions from the forecasts of 

the 12 abovementioned DFMs. But we don't necessarily 

require the forecasts of the 12 models, since some of 

them may be highly correlated and their inclusion in the 

mixture can only worsen the global outcome. In addition, 

the mean, standard deviation and weighting factor values 

must be selected for each of the members of the mixture. 

For the mean value of each member we take the forecast 

of the corresponding DFM. Even so, the values of a 

broad set of parameters need to be determined. 

To carry out that selection task we propose an 

optimization process ruled by a genetic algorithm (GA). 

A chromosome including 37 genes with real-value 

coding is used.  The meaning of each gene is shown in 

Table 2. The first gene is used to code the DFMs that are 

used in the mixture. This gene ranges 1 to 4095 and its 

transformation to binary number gives the set of selected 

DFMs. For example, a value of 39 for this gene means 

that the DFMs 7, 10, 11 and 12 are the selected to form 

the mixture (the binary transformation is 000000100111, 

what indicates the selected DFMs). The standard 

deviation for the normal distribution corresponding to 

each DFM is coded with two genes. That value is 

calculated as a linear function of the mean, as expressed 

in equation (1), where σi represents the standard 

deviation for the forecasts of DFM i, µi represents the 

mean of the gaussian distribution (that is, the forecast 

provided by the DFM i), and c0,i and c1,i are the 

coefficients coded into two genes. Finally, another gene 

is needed for each DFM to code the weighting factor. 

 

iiii cc  ,1,0                       (1) 

 

In Table 2, genes 2 to 13 represent the proportional 

part of the standard deviation to the mean for each DFM 

(c1,i values). Genes 14 to 25 represent a fixed term for 

the standard deviation for each DFM (c0,i values). The 

last genes, from 26 to 37, represent the weighting factors 

for each DFM, although to apply the proposed normal 

mixture distribution, the weights of the selected DFM 

need to be normalized so that they sum 1.  
 

Table 2. Structure of the chromosome. 

 

Gene Range Meaning 

1 1 to 4095 Selected DFMs 

2-13 0.02 to 0.25 
Proportional coefficient 

for standard deviation, c1 

14-25 0 to 50 
Fixed coefficient for 

standard deviation, c0 

26-37 0.02 to 2.1 Prior weighting factor 

 

Accuracy, reliability, and sharpness are the main 

characteristics of a probabilistic forecast. The selection 

of the best PFM is the search for a compromise between 

the three characteristics. The Continuous Ranked 

Probability Score (CRPS) is the skill score used to 

evaluate jointly the accuracy, the reliability and the 

sharpness of the probabilistic forecasts [21]. A more 

limited skill score is the root-mean-square deviation 

(RMSD) from complete histogram flatness [22]. A 

probabilistic forecast is indistinguishable from future 

true values of the predicted variable if these values fall 

with an equal probability in segments or "bins". For 

example, in the segment of PV power limited by the 

values of quantiles 0.6 and 0.65, the probability for the 

true PV power to fall in that segment is 0.05. In essence, 

the RMSD is an indicator of the reliability of the 
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probabilistic prediction. A lower RMSD value 

corresponds to a more reliable prediction. The RMSD is 

expressed by equation (2), where N+1 is the number of 

segments with equal probability, M is the total number of 

observations, and sk is the number of observations in 

each segment. The fitness function for the GA 

optimization could be the negative value of the CRPS 

with the training data set (forecasts of the 12 DFMs 

corresponding to the training data set), the negative 

value of the RMSD, or a combination of both of them. 
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4 Case study 

The proposed methodology was applied to a real case: a 

PV plant composed of two-axis trackers with a rated 

capacity near 2 MW. The data available for the plant 

corresponded to an hourly PV power generation time 

series for 30 months. The data show high intra-hour 

variability in the PV power generation.  Figure 2 plots 

the percentage of hours with power output variations 

greater than the 10% of the rated capacity of the PV 

plant. Only the five central hours of the day have been 

considered. The vertical axis of Figure 2 represents the 

percentage of cases (hours) which power generation 

value minus the value in the previous hour (difference in 

absolute value) is greater than 10%, 20%, etc., of the 

rated capacity. At least 21% of hours present variability 

over 10% of rated capacity for all the months. The 

winter months are the months with the highest variability. 

 

Fig. 2. Percentage of hours with power output variations over 

10% of rated capacity. 

 

Weather forecasts for all the hours in the time series 

were obtained from the Meteogalicia server (a regional 

weather forecast service). This server provided hourly 

forecasts of the 10 first variables (from “temp” to “prec”) 

shown in Table 1 in a grid format. The forecasts for the 

location of the PV plant were obtained by a bilinear 

interpolation of the forecasts for the nearest points 

(locations) in the grid. The forecasts for the “clear” 

variable were obtained using the clear sky 

Ineichen/Perez model [23]. The values for the last 

variables of Table 1 were calculated as explained in 

section 2. The data were divided into two sets. The first 

set with the data of 27 months (from October 2008 to 

December 2010) was the training data set. The data of 

the last three months were used as the testing data set.  

The 12 DFMs were trained using the functions of R 

package caret [24]. Several combinations of parameters 

were tested in order to optimize the DFMs (all except 

models 2 and 3). For each DFM were chosen the 

parameter values that provided the lowest mean RMSE 

with the 5 folds. Once the optimal values for the 

parameters of the models were determined, they were 

trained with the complete training data set. Table 3 

shows the forecasting results of the 12 DFMs with the 

training data set and with the testing data set. Some of 

the models present a similar performance (Mod2, Mod3, 

Mod7 and Mod9) with quite similar results for both data 

sets. One of the models presents an overfitting behaviour, 

with RMSE for training data set significative lower than 

those for testing data set (Mod5).  

Table 3. Deterministic forecasting models results. 

Model Technique 
RMSE 

train (kW) 

RMSE 

test (kW) 

Mod1 Bart 303.61 345.20 

Mod2 Blasso averaged 367.84 379.27 

Mod3 Bridge 367.85 379.44 

Mod4 Brnn 343.77 352.29 

Mod5 Cubist 218.49 360.61 

Mod6 Elm 342.07 356.55 

Mod7 Enet 367.74 378.95 

Mod8 Gbm 302.41 350.13 

Mod9 Lars 367.75 378.97 

Mod10 M5rules 338.39 369.21 

Mod11 Ppr 348.49 365.63 

Mod12 Qrnn 347.67 348.99 

 

The proposed methodology with the optimization 

with the GA was applied to the forecasts of the 12 DFMs. 

A total of 100 generations with 100 individuals per 

generation was carried out with the forecasts for the 

training data set of the 12 DFMs. Elitism was applied to 

the best four individuals, the crossover and mutation 

rates were fixed in 0.8 and 0.1, respectively. 

Several tests were carried out only with the data of 

the training data set (forecasts of the 12 DFMs). The first 

test selected the negative value of the CRPS as fitness 

function achieving a value of 138.04 kW, but with a 

RMSD value of 304.35 cases. In the second test the 

negative value of the RMSD with the training data set 

was used as the fitness function; the CRPS value of the 

optimized model was 149.23 kW and the RMSD value 

was 180.12 cases. The conclusion reached with these and 

other tests was that both skill scores (CRPS and RMSD) 

had a reverse behaviour: when one got better, the other 

got worse. As a compromise between the two skill scores, 

bearing in mind that they have different measurement 

units, the fitness function was fixed as the negative value 

of the sum of the CRPS and the RMSD referred to their 

best values, that is, the CRPS divided by 138.04 kW and 

the RMSD divided by 180.12 cases. 
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Once the model was optimized using the new fitness 

function (negative value of the sum of the two skill 

scores referred to their best values), the model was 

applied to the testing data set (forecasts of the 12 DFMs 

for the testing data set). The DFMs selected by the GA 

were Mod1, Mod5 and Mod12. The probabilistic 

forecasting results with the testing data set are shown in 

Table 4. The RMSE value corresponds to the error with 

the mean value of the mix distribution for each hour in 

the testing data set. As it is shown, this RMSE value is 

lower than the achieved for the best of the DFMs.  

Table 4. Forecasting results of Probabilistic Models. 

Model 
CRPS 

(kW) 
RMSD  

RMSE 

(kW) 

Proposed model 182.83 40.11 339.40 

Empirical distribution 217.85 98.92 347.27 

Quantile regression 214.30 11.91 394.28 

 

In order to assess the probabilistic forecasting results 

of the proposed model, two other PFMs were developed. 

The first one was build using the empirical distribution 

provided by the 12 forecasts of the DFMs: for each hour 

in the testing data set, the forecasts of the 12 DFMs were 

used as a sample of an empirical distribution. The second 

one was a conditional quantile regression model adjusted 

with the same data used to train/adjust the 12 DFMs, that 

is, the training data set with the variables shown in Table 

1. For these new probabilistic models, quantiles from 

0.05 to 0.95 in 0.05 steps were obtained and they were 

used to calculate the probabilistic skill scores in Table 4. 

The quantile 0.5 was used as the deterministic forecast 

for these two models. As it is shown in the table, the 

proposed model achieves better probabilistic forecasts 

(lower CRPS) and point forecasts (lower RMSE) than 

the obtained with the two other models. Only the value 

of the RMSD is worse than that obtained with the 

conditional quantile regression model. 

5 Conclusions 

 

In this work, we propose a methodology for generating a 

PFM for the hourly power production in a PV plant 

using point forecasts from a set of DFMs developed with 

different techniques. The PFM is based on a parametric 

approach by assuming that the PDF of the PV power 

production is a mix of normal distributions and that the 

forecasting errors on the training and testing data sets 

have the same distributions. The proposed PFM model is 

optimized by means of a GA which selects the DFMs 

that compose the mix, as well as the variance and weight 

that each normal distribution have in the final mixture. 

The results, in the form of a PDF for each hour, 

constitute the probabilistic forecasts. The mean value of 

the mix is used as the point forecast of the PFM. The 

results obtained with a testing data set, not used to build 

the PFM and the DFMs, show a better point forecasts 

than the provided for any of the DFMs and includes 

complete probabilistic information to assess the 

uncertainty associated to the forecasts. 

Further research works are underway to improve the 

forecasting results obtained with the proposed model. 

Other mixture of distributions, such as truncated normal 

distributions, t distributions, etc., should be tested and 

also a dynamic structure which could select, for each day, 

the DFMs that constitute the mix according to their 

accuracy in the previous days. 
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