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Abstract. While the number of private electrical facilities is increasing, there are not enough security 
personnel to perform the security work. In this paper, we propose a random forest model for predicting leakage 
current alarms in order to improve the efficiency of electrical safety operations. A random forest was created 
using periodic inspection data, alarm data, and meteorological data as explanatory variables, and 
generalization performance was evaluated by OOB-based F-measure. In order to obtain the highest 
performance, a grid search was performed to optimize the hyperparameters. As a result, it was possible to 
achieve alarm prediction with a certain level of performance. In addition, the optimal hyperparameters were 
found by grid search, and the F-measure was improved. 

1 Introduction 
As the number of private electrical facilities 

increases, the maintenance has become important. The 
maintenance must be performed by qualified security 
personnel, but the amount of the workforce is gradually 
becoming insufficient. According to the Japanese 
Ministry of Economy, Trade and Industry, about 4,000 
people are expected to be short of the expected demand of 
about 18,000 people in 2030. For this reason, it is 
important to increase the efficiency of electrical security 
operations. 

In order to improve the efficiency of electrical 
security operations, we focused on “false alarms”. When 
the insulation monitoring device installed in each 
electrical facility detects a leakage current exceeding a 
certain value, an alarm is issued and the security personnel 
goes to the site for inspection. However, there are cases 
where the cause is unknown or only minor defects are 
found. This is “false alarm” and causes a reduction in the 
efficiency. 

We aim to suppress unnecessary dispatch caused by 
“false alarms” by predicting alarms using Random Forest 
(RF). RF is one the most popular Machine Learning 
methods. The applications of RF, for examples, solar 
power forecast [1], electricity price forecast [2], building 
energy prediction [3, 4], and fault diagnosis for PV arrays 
[5]. The authors have conducted the prediction model 
with random forest [6, 7]. In this paper, we conducted a 
grid search to find the most suitable hyperparameters for 
accurate prediction. 

2 Electrical security and insulation 
monitoring 

2.1. Electrical security operations 

Once a private electrical installation is installed, 
qualified security personnel must perform maintenance. 
The work of the security staff includes a monthly check 
once a month and an annual check once a year. In these 
periodic inspections, leakage current values are measured 
to check for abnormal insulation. In addition, a temporary 
inspection is conducted when an insulation alarm is 
triggered. 

In this electrical accident response work, there is a 
case where a minor failure is detected or a failure is not 
found even though an alarm is received. The unnecessary 
dispatch caused by “false alarm” has reduced the 
efficiency of the electrical security service.  

2.2. Insulation monitoring system 

The electrical facility is monitored for insulation for 
24 hours by an insulation monitoring device, which is 

 
Fig. 1. Workflow and Insulation Monitoring Systems at the 
Accident. 
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installed between the transformer and the electric facility. 
Fig. 1 shows an insulation alarms and the accident 
response work flow. The insulation monitoring device 
measures the current flowing into and out of the electric 
facility. Then, the leakage current is detected by 
calculating the difference. When the insulation 
monitoring device detects a leakage current exceeding 50 
mA, an alarm is issued and the data is sent to the security 
service backbone system. Based on the data, security 
personnel go to the site and conduct a temporary 
inspection. 

3 Random forest model 

3.1. Random forest 

Fig. 2 shows Random Forest consists of a large 
number of classification trees that are created with sets 
recursively applying two-conditional branching rules. 
The prediction is determined by classifying the data with 
the classification trees and taking the majority of them.  

In this paper, the random forest model was 
implemented in Python scikit-learn package [8]. We used 
the periodic inspection data and alarm data provided by 
Kanto Electrical Safety Inspection Association (Fig 3) 
and the weather data released by the Japan Meteorological 
Agency. The target period is two years from April 2016 
to March 2018, and the target areas are Ibaraki, Chiba, 

Tochigi, Gunma, Yamanashi, Saitama, Tokyo, Kanagawa 

and Eastern Shizuoka. Table 1 shows the objective 
variables and explanatory variables. These data were 
compiled and data containing defects were removed. As a 
result, the total was 338,933 data. 

3.2. Grid search 

To find the optimal hyperparameters for the random 
forest, a grid search was performed. The hyperparameters 
targeted for grid search are shown below [8]. 
(a) n_estimators 

The number of decision trees contained in a random 
forest. The default is 100. 

(b) max_depth 
The maximum depth of each decision tree. The 
default is None which means that classification is 
done until all nodes are pure or the number of samples 
in a node is a fixed number. 

(c) max_leaf_nodes 
The maximum number of leaf nodes created as a 
result of decision tree classification. The default is 
None which means that there is no limit on the 
number of leaf nodes. 

(d) max_features 
The maximum number of features used when 
creating each split. The default is “auto” which 
means that if the total number of the features is N, the 
maximum number of features used is √𝑁𝑁 . Other 
options include "sqrt" (√𝑁𝑁, same as "auto"), "log2" 
(log2 𝑁𝑁), and None (N). 

 
Fig. 3. Data tables for the proposed prediction models. 
 

Table 1. Objective variable and explanatory variables 
Objective 
variable Explanatory variable 

Flag represents 
alarm on the day 

 Location 
 Leakage current at 

periodical inspection 
 Contracted demand 
 Alarm time 
 Flag represents alarm on 

the previous day 
 Customer ID 
 Hourly temperature 
 Hourly humidity 
 Hourly Precipitation 

 

Table 2. Hyper parameters experimented in Grid Search. 
Hyper Parameter Number 

n_estimators 100(default), 500, 550, 600 
max_depth 2,5,10,20,None(default) 

max_leaf_nodes 100,500,1000, 
2000,5000,None(default) 

max_features “sqrt”(default), None 
 

 
Fig. 2. Image of classification by random forest 
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Table 2 shows the setting values of each hyper parameter 
for grid search. 

3.3. Evaluation index 

In order to evaluate the generalization performance 
of random forest, OOB verification was performed. When 
creating each decision tree in a random forest, the training 
instance is sampled using bootstrap. This means that 
about 37% of training instances are not sampled in each 
decision tree. These instances are called OOB instances. 
The performance of each decision tree is evaluated by 
OOB instances, and the generalization performance of the 
random forest is evaluated by averaging them [9].  

In this study, we evaluated the accuracy, precision, 
recall, and F-measure obtained by OOB verification. First, 
the alarm prediction results are counted according to the 
following classification. 

TP : Positive in prediction, Positive in actual 
FP : Positive in prediction, Negative in actual 
TN : Negative in prediction, Negative in actual 
FN : Negative in prediction, Positive in actual 
The accuracy rate is an index that shows how well 

the overall prediction results match the actual values, and 
is calculated by the following equation. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁
     (1) 

The precision rate is an index that shows how well the 
samples predicted to be positive match the actual value. 

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
      (2) 

The recall rate is an index that shows how well the 
samples that are actually positive match the predicted 
value. 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁
     (3) 

The F-measure is the harmonic mean of precision and 
recall. 

𝐹𝐹1 =
2 × 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

     (4) 

4 Results 
Table 3 shows the best and the worst results of alarm 

prediction. The best F-measure in this experiment is 
recorded when n_estimators is 550, max_depth is 10, 
max_leaf_nodes is 1000, and max_features is "sqrt". 
Conversely, the worst F-measure is recorded when 
n_estimators is 500, max_depth is 2, max_leaf_nodes is 
None, and max_features is "sqrt". In comparison, 
accuracy and precision are almost equal, but recall is 
improved by about 7.3%, and F-measure is improved by 
about 4.2%. 

Table 4 shows the all results of alarm prediction on 
each grid search point. In order to compare the prediction 
accuracy, the vertical axis of the graph uses the F-measure 
obtained by OOB verification. 

Focusing on n_estimators, the highest F-measure is 
recorded when 550 is set, and the F-measure decreases 
when n_estimators is increased or decreased. In addition, 
for certain n_estimators, the maximum value of the F-
measure is higher when max_features is "sqrt" than when 
None. However, it can be seen that the effect on the F-
measure is relatively smaller than other hyperparameters. 

Focusing on max_depth, the F-measure is often the 
maximum when it is set to 10, and decreases both when it 
is made larger and smaller. Among the parameters 
verified in this experiment, the effect on the F-measure is 

Table 3. Comparison between the best result and the worst. 
(a) The best result 

n_estimators=550, max_depth=10, max_leaf_nodes=1000, max_features=“sqrt” 

 Prediction 
Summation 

Negative Positive 

Actual alarm 
Negative 157520 47539 205059 
Positive 51592 82282 133874 

Summation 209112 129821 338933 
Accuracy = 0.70752 Precision = 0.63381 
   Recall    = 0.61462 F-measure = 0.62407 

 
(b) The worst result 

n_estimators=500, max_depth=2, max_leaf_nodes=None, max_features=“sqrt” 

 Prediction 
Summation 

Negative Positive 

Actual alarm 
Negative 162690 42369 205059 
Positive 61446 72428 133874 

Summation 224136 114797 338933 

Accuracy = 0.69370 Precision = 0.63092 
   Recall    = 0.54102 F-measure = 0.58252 
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the largest, indicating that the difference between the 
maximum and minimum values is about 4%. 

Focusing on max_leaf_nodes, when max_features is 
"sqrt", F-measure tends to improve when there are less 
restrictions such as large numbers or None. On the other 
hand, when max_features is None, the F-measure did not 
improve even if the restriction was relaxed. 

Focusing on max_features, in the case of “sqrt”, the 
F-measure changes greatly depending on max_depth, and 
the F-measure improves as max_leaf_nodes increases. On 
the other hand, when max_features is None, the change in 
F-measure due to max_depth is slightly small, and a large 

value of max_leaf_nodes does not necessarily improve the 
F-measure. When comparing with the same n_estimators, 
the maximum value of the F-measure is higher for “sqrt” 
than for None. 

5 Conclusion 
We made a prediction model of the leakage current 

alarm for the next day using a random forest and 
optimized the hyperparameters by grid search. The 
highest score was recorded when n_estimators, 

Table 4. The F-measure on each grid search point. 
n_estimators max_features 

“sqrt” None 

100 

  

500 

  

550 

  

600 

  
 

 

0.57

0.58

0.59

0.6

0.61

0.62

0.63

2 5 10 20 None

f1

max_depth

0.57

0.58

0.59

0.6

0.61

0.62

0.63

2 5 10 20 None

f1

max_depth

0.57

0.58

0.59

0.6

0.61

0.62

0.63

2 5 10 20 None

f1

max_depth

0.57

0.58

0.59

0.6

0.61

0.62

0.63

2 5 10 20 None

f1
max_depth

0.57

0.58

0.59

0.6

0.61

0.62

0.63

2 5 10 20 None

f1

max_depth

0.57

0.58

0.59

0.6

0.61

0.62

0.63

2 5 10 20 None

f1

max_depth

0.57

0.58

0.59

0.6

0.61

0.62

0.63

2 5 10 20 None

f1

max_depth

0.57

0.58

0.59

0.6

0.61

0.62

0.63

2 5 10 20 None

f1

max_depth

4

E3S Web of Conferences 152, 03003 (2020) https://doi.org/10.1051/e3sconf/202015203003
PEEE 2019



 

max_depth, max_leaf_nodes, and max_features were 550, 
10, 1000, and “sqrt”. The recall was improved to 0.61462 
and F-measure recorded 0.62407. According to Eqn. (3), 
recall means that how well the prediction matches when 
the alarm actually issue. Recall’s improve will reduce 
missing the alarm. 

In this study, we predicted leakage current alarms in 
order to improve the efficiency of the security work for 
the increasing number of private electrical facilities. In 
addition, it can be expected that predicting the severity of 
alarms, that is, how serious failure has occurred, will lead 
to further improvement in the efficiency of electrical 
safety operations. In order to predict the severity of alarms, 
we will conduct verification such as creating a random 
forest with multiple labels for the objective variable. 
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