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Abstract. Based on the railway network performance, Infrastructure 
Manager is obligated to define the Maintenance plan for railway 
infrastructure, which contains corresponding values for intervention limits 
and alert limits. This paper considers vehicle response to track excitation 
due to the rail defect (code 2202 according to defect classification). It is 

indicated that theoretical models and acceleration measurements could be 
used to assess the quality of track geometry and ride comfort. The 
importance of early detection of irregularities of superstructure and 
substructure was emphasized. Moreover, the importance of inspection and 
preventive maintenance on the modern railway infrastructure was 
considered. According to the previous, the authors recommend non-
destructive methods for inspection  and early detection of irregularities of 
railway infrastructure. 

1 Introduction 

Interoperability of the railway system should provide the safe and uninterrupted railway 

traffic. Efficient maintenance is one of the preconditions for the safety of railway system. 

Technical Specifications for Interoperability (TSIs) are law and define the technical and 

operational standards, which have to be met in order to satisfy the essential requirements 
and to ensure the interoperability of the European railway system. 

INF TSI [1] refers both to „Infrastructure“ subsystem and part of „Maintenance“ 

subsystem. According to [1], maintenance plan has to be defined by Infrastructure Manager 

(IM) for each railway line before putting it into service. The maintenance plan has to 

include values for Immediate Action Limits (IAL) [2], as well as the measures to be taken 
(speed restriction, repair time) when prescribed values are exceeded. Significant part of this 

maintenance plan deals with the surface irregularities on the rail head and their treatment. 

The surface defect on the rail head, which is known as long-pitch corrugation (code 

2202 in accordance with [3]), and its effect on the frequency of the maintenance cycle is 

considered in this paper. This defect occurs on the head of the inner rail in curves (Figure 

1) due to the traffic load. The defect is characterised by depressions in the running surface 

on the rail head with the wavelength in the range 8 - 30 cm. 
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Fig. 1. Long-pitch corrugation in curve with radius R = 300 m (railway section Resnik - Bela Reka 
for mixed traffic). 

The paper emphasizes the influence of the vertical acceleration of unsprung masses and 

dynamic forces on the frequency of the maintenance cycle. The range of defect depth 0.03 - 

0.30 mm and speeds up to 200 km/h, as well as different quality of track maintenance were 

considered. 

2 Vertical acceleration of unsprung mass 

Rail defect type 2202 (according to [3]), can be represented by the sine function (1), as 

discussed in [4] and presented in Figure 2. 
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where: 
- z, x - axes of rectangular coordinate system (z is vertical and x is longitudinal track axis), 

- 2a - depth of the defect, and 

L - length between successive depressions on the surface of the rail head. 

 

 

Fig. 2. Simple model of rail defect type 2202 (sine function). 

Maximum vertical acceleration of unsprung mass per wheel due to the unevenness on 

the rail head is defined by equation (2). 
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where: 

z̈max - maximum vertical acceleration of unsprung mass per wheel (the second derivative of 

the sine function (1) by time) [m/s2] and 

V - vehicle speed in x direction [m/s]. 
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Table 1 shows the change in vertical acceleration depending on the vehicle speed and 

the length of the depression on the surface of the rail head when the defect depth is 0.03 

mm. It should be noted that the analysed depth of defect is about 10 times less than the 

decarburisation depth in the subsurface of the new rail (Figure 3). This confirms the 

importance of preventive grinding of the new rails before putting them into service. 

Table 1. Maximum vertical acceleration of unsprung mass per wheel (for defect depth 0.03 mm). 

V [km/h] L [m] z̈max [m/s2] L [m] z̈max [m/s2] 

120 

0.3 

7.31 

0.08 

102.81 

140 9.95 139.93 

160 13 182.77 

180 16.45 231.32 

200 20.31 285.58 

 

 

Fig. 3. Decarburisation depth up to 0.28 mm for steel grades R200 and R220 [5]. 

3 Quasi-static axle load and track geometry deterioration 

The increase in static effects could be determined using equation (3), which was performed 

in accordance with the German Railway′s dynamic model developed by Professor 
Eisenmann: 
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where: 

- Qmax - quasi-static axle load [kN], 

- Qs - static axle load [kN], 

- k - coefficient of quasi-static influences, 

- t - statistical confidence (Table 2), 

- n - influence of the track quality (Table 2), 

- f - influence of speed and vehicle type (Table 2), 

- p - the proportion of the unsprung mass (0.07 - 0.10 for freight vehicles, 0.15 for 

passenger vehicles), and 
- g - gravitational acceleration (9.81 m/s2). 
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Table 2 shows the values of parameters in equation (3) in accordance with [6]. IM 

should prescribe appropriate parameter values for specific track sections by analysing 

maintenance activities, as well as maintenance cost and effectiveness. 

Table 2. The values of parameters in equation (3). 

 n t f(V) 

Old 
formula 

0.10  
(Excellent quality) 

1 
(67% confidence) 

 
2 

(96% confidence) 

 
3 

(99.7% confidence) 

1 

(V ≤ 60 km/h) 
 

1+(V-60)/140 
(V > 60km/h) 

0.20 
(Average quality) 

0.30 
(Poor quality) 

New 

formula 

0.15 
(Main line) 

1 (V ≤ 60km/h) 
 

1+0.5·(V-60)/140 
(Passenger vehicles) 

 
1+0.5·(V-60)/60 

(Freight vehicles) 

0.20 

(Local line) 

0.25 
(Other line) 

 

The exponential model of track geometry deterioration, presented with equation (4), 

shows that increased ballast pressure reduces the maintenance cycle. 
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where: 

- σref - ballast pressure due to the reference number of axle crossings [N/cm2], 

- σp - ballast pressure due to the tested number of axle crossings [N/cm2], 
- Nref - reference number of axle crossings, 

- Np - number of tested axle crossings, 

- w - referent exponent prescribed by IM for each track section, and 

- 100/γ - reduction of track maintenance cycle [%]. 

According to the engineering practice and previous considerations, the unevenness of 

the rail head surface could lead to the progressive deterioration of sleeper support [7], 

ballast material (Figure 4) and formation over time. 

 

 
Fig. 4. Mechanism of superstructure deterioration (Pančevo Varoš station, May 2017). 
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4 Discussion and conclusion 

According to [1], the direct responsibility of Infrastructure Manager (IM) to offer 

prescribed (contracted with Operators) quality of railway infrastructure. In addition, IM is 

obliged to have a Maintenance plan containing a set of values for Intervention Limits (IL) 

and Alert Limits (AL). These limits are proposed as a guideline in [2]. Each IM should 
specify limits for his own network taking into account track alignment design, construction 

rules, vehicle design and the type of operation on each line. Furthermore, IM should define 

maintenance policy and strategy based on the available financial resources, capacity and 
knowledge. 

Moreover, this paper presents the analysis of vertical acceleration of unsprung mass per 

wheel (vehicle response) due to the unevenness on the rail head (track excitation). The 
unevenness in rail surface (for example 0.03 mm or deeper) can cause significant vertical 

acceleration of unsprung mass with the increase in railway speed and axle load (Table 1). 

Therefore, the importance of inspection [8-11] and preventive maintenance on the modern 

railway infrastructure is essential. 

On the other hand, the analysis of vehicle response to the track excitation could be used 

by IM in order to provide objective, quantitative statements about the relationship between 

track geometry quality and ride comfort at different speed levels [2]. For these 

considerations, a theoretical model of direct acceleration measurements could be used. 

IM should develop original models for predicting the track geometry degradation, which 

are tailored to the specificities of the rolling stock and railway infrastructure, as well as 

maintenance policy. 
Understanding the mechanism of deterioration of superstructure and substructure is 

crucial for the effective maintenance. Moreover, early detection and removal of track 

irregularities, which could trigger the mechanism of infrastructure deterioration, saves 

money and time, thus increasing the availability and competitiveness of the rail system. 

Around the world, researchers are investigating the possibility of early detection of 

imperfections in “Infrastructure” subsystem and improving maintenance efficiency [12-20]. 

The authors of this paper are engaged in the development of methodology for non-

destructive inspection of superstructure and substructure condition (Figure 5). Equipment 

presented in Figure 5 (left) is based on the measurement of electric resistance in order to 

assess ballast and substructure condition. Middle and right part of Figure 5 shows 

measurements of microtremor of sleepers in station and in plain line, according to 

methodology described in [7]. 
 

 

Fig. 5. Equipment for non-destructive inspection of railway infrastructure. 

All maintenance activities have to ensure track quality, which correspond to the contract 

between IM and Operators. All measurements and inspections should be carried out in 

accordance to [21]. Furthermore, the control and improvement of the quality of performed 

maintenance activities contributes to the safety of the railway system (Figure 6). 
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Fig. 6. Sleeper damage during track tamping (railway section Resnik - Bela Reka). 

 

This work was supported by the Ministry of Education, Science and Technological Development of 
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