
 

 

Dynamics of the recuperative mechanical 
stepless vehicle’s drive 

Sergey Hoodorozhkov
1
 and Aleksandr Kozlenok

1*
 

1 
Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, , St. Petersburg, 

195251, Russia. E-mail: Kozlenok.A.V@gmail.com 

Abstract. The article represents the results of a theoretical study into the 

operation of a mechanical stepless vehicle drive with the recuperation of 

braking energy and flywheel energy storage. This paper mainly focused on 

Adjustable-Speed Drive (ASD) as a part of the infinite ratio continuously 

variable transmission equipped with flywheel energy storage. To study the 

proposed transmission, the authors compiled a mathematical model in the 

form of a system of nonlinear differential equations. The proposed model 

allows you to determine and monitor the change in the angular velocities 

and angular accelerations of the rotating links of the transmission. The 

results of the work will be used to analyze the components of a stepless 

drive in order to optimize its components to reduce the response time and 

increase the transmission efficiency, which will lead to a reduction in 

mechanical losses during the movement of the proposed vehicle.  

1 Introduction 

The existing mechanical stepless transmissions are usually friction-type: V-belt, disc or 

ball-and-socket gears. These variators belong to the category of CVT type (continuously 

variable transmission) stepless transmissions.  Their main drawback is a small range of 

torque transformation (2...5), the need to use an automatic clutch to start from standstill and 

the lack of self-regulation of the gear ratio at load changes. For these reasons, the inclusion 

of such gears in the regenerative movement systems of vehicles is impractical.  

The mechanical CVTs based on the use of freewheel clutches manufactured by Zero-

Max Drives (USA) belong to the category of Adjustable-Speed Drive (ASD) variators. 

These are stepless transmissions of Infinitely Variable Transmission (IVT) type, in which, 

unlike the CVT, the possibility of continuous gear ratio variability is implemented not 

within a limited but within an "infinitely" wide range of output shaft rotation speeds, 

including the stop mode.  

The main control principle of the ASD variator is a stepless speed control of the output 

shaft by changing the amplitude of the oscillations of four or more roller freewheel 

clutches, which alternately rotate the output shaft. The variator has high efficiency(η>0.92), 

simple design, is easy to adjust and maintain, and it is also cheaper than the other types. 

The main disadvantage is the lack of self-regulation of the gear ratio depending on the 
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external load. 

To eliminate this disadvantage and use an ASD variator in regenerative drives,  the 

transmission is supplemented by elastic linkage, for example, a torsion shaft,  which allows 

to carry out automatic torque transformation with a constant amplitude of oscillations of the 

driving unit of the freewheel clutch by changing the torsion bar twist angle,  providing an 

automatic increase in torque (decrease in the speed of the driven shaft)  with an increase in 

load and, conversely, a smooth decrease in torque (increase in the rotation speed of the 

output shaft) with a decrease in load [1,2].  

Fig. 1 shows a basic kinematic diagram of a recuperative mechanical system consisting 

of two identical flywheels connected by two identical but contra directional kinematic 

chains [3].  

 

Fig. 1. A recuperative mechanical system 

Each chain has a drive clutch, an articulation four-link chain, a freewheel clutch, a 

torsion shaft and a transmission with a constant gear ratio. Such a kinematic chain has the 

properties of a torque transformer.  

2 Materials and methods 

Let us consider the process of energy exchange between the flywheels when F1 clutch is 

involved. At the initial moment of time, the J1 flywheel has an angular velocity of  

max01   , while J2 flywheel has min02   . The J1 flywheel decelerates, and the 

J2 flywheel accelerates. At the end of braking/acceleration, it has to be min1   , and 

max2   . Then, when the F1 clutch is turned off and the F2 clutch is turned on, the 

process will be repeated in exactly the same manner, but in the opposite direction. In the 

work [4], the following ratio was produced in relation to this kinematic scheme: 
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Here,  imin and imax are the minimum and maximum values of the gear ratio, which can be 

changed by twisting of the torsion shaft from 0 when the output shaft is stationary (stop 

mode) to 1 in the absence of a load on it; 0 is the amplitude of the oscillations of the 

freewheel clutch driver; Ir_in, Ir_out is the constant reduction ratio in each kinematic chain. 
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On the basis of (1), we have 
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Dependence (3) is an expression of the circular gear ratio of the circuit when both 

clutches are engaged, (F1 and F2). In fact, only one of them is involved at a given moment. 

If we set the value of 0 (the design parameter) and imax and imin values, the dependence (3) 

will determine the required value of Ir_in, Ir_out and the range value of the flywheel’s angular 

velocities variation.  

Thus, dependence (3) establishes a relationship between the value of the selected range 

D of the i change in the gear ratio  �� � = �����	
 and � = ���,     (4) 

and the values 0 and the constant gear ratio of the matching redactors Ir_in, Ir_out. This 

makes it possible to carry out kinematic calculation of the regenerative drive (to determine 

the transfer ratios on the input and output of IVT transmission with the freewheel clutch). 

An example of plotting the change in the angular velocities of the flywheels with the 

involvement of F1 and F2 clutches  is performed in the work [4] on the basis of the study of 

the recuperative system of a 260-kg bike car,  equipped with a 10-kg flywheel and a 

recuperative mechanical stepless drive (Fig. 1). 

It is practical to start the theoretical study of the internal dynamics of the working 

processes of a recuperative mechanical stepless transmission with the consideration of the 

simplest three-mass model (with elasticity at the output of the freewheel clutch) shown in 

Fig. 2 (the general case with the external  input torque Md). The model in Fig. 2, at the top, 

corresponds to the period of the effective run of the transmission  (joint movement of the 

driving and driven parts of the transmission),  and Fig. 2, at the bottom, to the idle period 

(the driving and driven systems move independently).  

When constructing a mathematical model, it should be borne in mind that it is practical 

to solve dynamics problems with a nonlinear position function, such as the case with this 

gear, with the use of a special type of Lagrange equations with “extra” coordinates. 

 

Fig. 2. The three-mass model of mechanical stepless transmission at the stages of effective and idle 

running 
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Let us construct the equations of motion for the transmission model during its effective 

running (Fig. 2, above) with respect to the second derivatives of the generalized 

coordinates: 

Lagrange equations with "extra" coordinates are as follows: ��
 ( ����� �) − ����� + ����� = �� + ∑ �� ⋅ ℎ������                 (5) 

 

Here λi is the Lagrange multiplier, and hij is the coefficient with the Lagrange multiplier. 

Generalized coordinates selection:                                     

)( 12  F                      (6) 

 

Here φ1, φ2, φ3 are the angular movement coordinates of the corresponding masses, and 

F(φ1) is the function of the position. 

Then the expression of kinetic energy through generalized velocities will be equal to: 

  = �� ⋅ ["� ⋅ #��� + "� ⋅ #� �� + "$ ⋅ #� $�];                                      (7) 

 ����� ' = "� ⋅ #��; ����� ( = "� ⋅ #� �; ����� ) = "$ ⋅ #� $;          (8) 

 ��
 ( ����� ') = "� ⋅ #*�; ��
 ( ����� () = "� ⋅ #* �; ��
 ( ����� )) = "$ ⋅ #* $;     (9) 

 ����' = ����( = ����) = 0;    (10) 

The expression of potential energy in generalized coordinates, including the "extra" 

ones: , = �� ⋅ [- ⋅ (#� − #$)�] = �� ⋅ [- ⋅ (#�� − 2 ⋅ #� ⋅ #$ + #$�)�];        (11) 
����' = 0; ����( = - ⋅ #� − - ⋅ #$; ����) = - ⋅ #$ − - ⋅ #�;                    (12) 

 

The equation relating the "extra" coordinate to the independent generalized coordinate: 

);( 12  F                                                     (13) 

 

Let us differentiate the last equation with respect to time and write it as follows: #� � = 0′(#�) ⋅ #��; #* � = 0′′(#�) ⋅ #��� + 0′(#�) ⋅ #*�;      (14) 

Then 0′(#�) ⋅ #�� − #� = 0;                               (15) 

Here  

1

1 )(



d

dF
F  is the transfer function. 

The constraint equation is as follows: 

ℎ� ⋅ #�� + ℎ� ⋅ #� � + ℎ$ ⋅ #� $ + ℎ = 0;       (16) 

 

Comparing (15) with (16), we write down ℎ� = 0′(#�); ℎ$ = −1.The remaining 

coefficients are zero. 

Summarized forces determination. By producing an expression of the sum of the works 

of non-potential forces on possible movements and grouping the members at δqi, we define 

Qi. 

4

E3S Web of Conferences 157, 01009 (2020)
KTTI-2019

https://doi.org/10.1051/e3sconf/202015701009



 

 

 
3

1

iii hMQ �� = 4д; �� = −45; �$ = −45                   (17) 

As a result, the system of differential equations is as follows: 

 

6"� ⋅ #*� = 4д + � ⋅ 0′(#�);"� ⋅ #* � = −- ⋅ (#� − #$) − �;"$ ⋅ #* $ = - ⋅ (#� − #$) − 45;                       (18) 

 

 

We use the second equation to determine the Lagrange multiplier λ: 

 � = −"� ⋅ #* � − - ⋅ (#� − #$);      (19) 

 

Given the fact that #� � = 0′(#�) ⋅ #��; #* � = 0′′(#�) ⋅ #��� + 0′(#�) ⋅ #*�;          (20) 

we produce � = −- ⋅ (#� − #$) − "� ⋅ 70′′(#�) ⋅ #��� + 0′(#�) ⋅ #*�8;                     (21) 

 

Then, by substituting λ into the system (12), we have 

 

9#*� = {4д + 0′(#�) ⋅ [−;� ⋅ (#� − #$) − "� ⋅ #��� ⋅ 0″(#�)]}/("� + "� ⋅ 0′(#�)�);#* � = #��� ⋅ 0″(#�) + #*� ⋅ 0′(#�);#* $ = [;� ⋅ (#� − #$) − 4-]/"$;  

(22) 

 

Here 0(#�) = #> ⋅ (1 − -?@ #�); 0′(#�) = #> ⋅ @��( #�); 0″(#�) = #> ⋅ -?@( #�) is 

the position function (gearing ratio), its 1st (gearing function) and 2nd derivatives, 

respectively;  Md and Ms are the reduced moments of the engine and the resistance;  C is the 

normalized coefficients of the roll rate;  J1, 2, 3 are the reduced moments of inertia of the 

masses. 

At the idle stage, the system falls into two independent subsystems, the dynamic models 

of which are shown in Fig. 2 below.  

The equations describing the behavior of the driving subsystem in the idling period with 

respect to the second-order derivatives have the form of (23), while the equations 

describing the behavior of the driven subsystem have the form of (24) 

A#*� = {4д + 0′(#�) ⋅ [−"�� ⋅ #��� ⋅ 0″(#�)]}/("� + "�� ⋅ 0′(#�)�);#* �� = #��� ⋅ 0″(#�) + #*� ⋅ 0′(#�);         (23) 

 B#* �� = −;� ⋅ (#�� − #$)/"��;#* $ = [;� ⋅ (#�� − #$) − 45]/"$.                                                            (24) 

Here, J21, J22 are the inertia moments of mass 2, reduced to the driver and the driven 

unit of the freewheel clutch;  21 and 22 are the coordinates of masses with inertia 

moments J21and J22. We will take the values of inertial elastic coefficients for the scheme in 

Fig. 4 as based on the reduction of the inertial-elastic units of the bike car [2] without 

taking into account the friction losses in the chain drive and in the freewheel clutch.  
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3 Results 

Obtained nonlinear differential equations describe the operation of a stepless transmission 

as a mechanical system with a variable structure on the basis of one of the numerical 

methods give us follow results. Conditions of the bike car movement: - acceleration from 

zero initial speed (the angular velocity of the bike car normalized by the output shaft 

0пр

в );  

f = 0.012 is the travel resistance coefficient;          

 - the reduced driving torque is zero Md = 0 (acceleration with flywheel); 

-the moment of resistance brought to the output shaft at regenerative acceleration, Nm 

 

   Мс_пр = 16.37  

- the moment of inertia of the flywheel normalized to the input shaft of the stepless 

transmission is equal to, kg*m
2 "М

пр = 0.646 

- the maximum angular velocity of the flywheel normalized by the input shaft, radian/s 

 Hм
пр_�	
 = 111.7 

 

- the moment of inertia of the bike car reduced to the output shaft of the stepless 

transmission, kg*m
2
-"в

пр = 74.3 

Fig. 3,4 and 5 shows the fragments of working processes in the mechanical stepless 

transmission of a bike car constructed on the numerical computation of the equation system 

of 14, 15, 16. The graphs are produced for the normalized angular velocities of inertial 

masses  J21, J22, J3 at the stages of effective and idle running of the freewheel clutch for the 

entire period of recuperative acceleration of the bike car (Fig. 3), in the initial (Fig. 4) and 

final Fig. 5) periods of acceleration. 

 

 

Fig. 3. The graphs of the changes in the normalized angular velocities of transmission linkage ω21, 

ω22, ω3 (radian/second) during acceleration t, for the entire period of the bicycle car recuperative 

acceleration 

From the graphs, it follows that at the beginning of acceleration there is a maximum 

amplitude of the reduced angular velocity of the flywheel, ω21 (55 rad/sec) and the 

minimum phase of idle running, approximately 0.005 sec. At the end of acceleration, the 

amplitude of the specific angular velocity of the flywheel decreases to 25 radian/s, and the 

idle phase increases to 0.05 seconds. This corresponds to an increase in the linear speed of 

the bike car from zero to 17 km/h and a decrease in the speed of the flywheel from 2030 

rpm to 500 rpm [5]. 
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Fig. 4. The graphs of the changes in the normalized angular velocities of transmission linkage ω21, 

ω22, ω3 (radian/second) during acceleration t, in the initial period of the bicycle car recuperative 

acceleration  

 

Fig. 5. The graphs of the changes in the normalized angular velocities of transmission linkage ω21, 

ω22, ω3 (radian/second) during acceleration t, in the final period of the bicycle car recuperative 

acceleration 

The nature of the torque (N*m) changes at the input and output of the stepless 

transmission is shown in Fig. 6, 7and 8: 

 

Fig. 6. The graphs of torque change on input M1 and output M2 transmission shafts during the entire 

period of the bicycle car recuperative acceleration  
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Fig. 7. The graphs of torque change on input M1 and output M2 transmission shafts during the initial 

period of the bicycle car recuperative acceleration  

 

Fig. 8. The graphs of torque change on input M1 and output M2 transmission shafts during the final 

period of the bicycle car recuperative acceleration  

4 Conclusion and discussion 

The analysis of the graphs shows that with an increase in speed from 0 km/h to 17 km/h, the 

maximum torque on the output shaft is automatically reduced from 345 to 90 N*m. The 

torque transformation coefficient in the transmission changes with the increase of the 

output shaft speed from nearly 30 (at the start from standstill) to 3.6 at the maximum speed. 

The cycle time of the transmission work process increases from 0.057 to 0.2 seconds. 

The maximum values of linear acceleration during acceleration occur in the initial 

period and do not exceed 2 m/s
2
, decreasing to 0.3 m/s

2
 at the end of acceleration.  

Due to the symmetry of the circuits, the dynamic processes in a stepless transmission 

with regenerative braking are similar to the process of regenerative acceleration, and, 

accordingly, the working processes are similar to those shown in Figures 3 and 4.  

The obtained results of the theoretical study into the dynamics of the working processes 

in the recuperative mechanical stepless transmission allow us to conclude that the 

developed mathematical model and the methods of its research are effective. The performed 

calculations confirm the effectiveness of this direction of technical development in the field 

of mechanical stepless transmissions of vehicles with the recovery of braking energy [5,6].    
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