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Abstract. Dynamic fracture of a one-dimensional chain of identical linear 
oscillators (masses connected by springs) is considered in the work. The 
system is supposed to consist of arbitrary but finite number of links and the 
first mass is supposed to be fixed. Two loading conditions are discussed: 
free oscillations of an initially statically prestressed chain and loading the 
chain with a short deformation pulse. Both problems are solved analytically 
for an arbitrary number of links. The obtained solutions are investigated and 
a dynamic fracture effect related to an explicitly discrete structure of the 

system is revealed: a deformation wave travelling through the chain is 
distorted and some links may be subjected to critical deformation. The 
obtained solutions for the chain are compared to the solutions of analogous 
problems stated for an elastic rod – a continuum counterpart of the 
considered discrete system. It is shown that the discussed fracture effect 
cannot be found in a continuous system.  

1 Introduction 

Mass-spring models are a common tool in mechanics due to their simplicity and ability to 

address rather complicated phenomena. For example, in work [1] the oscillator model is 

coupled with finite element method to address acoustic emission studies of rocks.  

Oscillator chains were considered in works by L. Slepyan and his co-workers [2], 

however this approach considers infinite oscillator chains. Moreover, the chain models are 

successfully used to study peculiar heat conduction effects in crystals. Two-dimensional 

models have been also used to address effects encountered in dynamic crack propagation 

problems. For example, in work [3] the crack velocity oscillations are explained using a 
lattice model, while in [4] a bi-material model is studied in order to investigate various 

regimes of the interface crack propagation. The chain models have been also used to address 

martensitic phase transformations as seen from work [5].  
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Simple mass-spring models have been effectively applied to study rate sensitivity of 

materials and inverse rate sensitivity in particular [6].  

In this paper dynamic fracture effects related to discreetness of the oscillator chain system 

are discussed. Firstly, analytic solution for the system of differential equations governing the 

chain movement is obtained. This solution is then compared to the solution of a one-

dimensional wave equation, which describes wave propagation in an elastic rod – a 

continuous analogue of the oscillator chain.  

2 Static preload with abrupt link failure 

2.1 Analytic solution of the chain problem 

Consider a uniformly deformed chain consisting of 𝑁 + 1 equal linear oscillators with both 

ends fixed.  

 

 
Fig. 1. Uniformly deformed chain with an abruptly failing link. 

If the masses are taken equal 𝑚, stiffnesses of the springs – 𝑐, the following system of 

differential equations coupled with initial conditions describes the chain motion: 

𝑴𝑸̈ + 𝑪𝑸 = 𝟎 
𝑞𝑖(𝑡 = 0) − 𝑞𝑖−1(𝑡

= 0)
= 𝑙𝑐 

𝑞𝑖̇(𝑡 = 0) = 0 
𝑞0(𝑡) = 0 

(1) 

where 𝑸 = ( 𝑞1, 𝑞2,.., 𝑞𝑁) is a vector containing relative mass displacements, 𝑴 is the mass 

matrix and 𝑪 is a stiffness matrix and 𝑙𝑐  is critical link deformation. Moreover, it is supposed 

that link with number 𝑁 + 1 (dashed link in figure 1) does not bear this load and breaks 

abruptly at 𝑡 = 0 initiating a release wave. The following fracture conditions are used: 
|𝑞𝑖 − 𝑞𝑖−1| > 𝑙𝑐 , 𝑖 = 1. .𝑁. Matrices 𝑴 and 𝑪 read as: 

𝑴 = 𝑚𝑬, 𝑬 is identity matrix 

 

𝑪 = 𝑐

(

 
 

2 −1 ⋯ 0 0
−1 2 −1 ⋯ 0

⋱ ⋱ ⋱
0 −1 2 −1
0 0 ⋯ −1 1 )

 
 
= 𝑐𝑲 

 

(2) 

One of the chain ends remains fixed, and therefore 𝑞0(𝑡) = 0 ∀𝑡. The substitution 𝑡′ =

𝑡√𝑐 𝑚⁄  yields the dimensionless problem with the mass matrix equaling identity matrix and 

the stiffness matrix 𝑲 =
1

𝑐
𝑪 from (2). Additionally, normalized deformations of the chain 
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links are introduced according to equation 𝑢𝑖 = 𝑞𝑖 − 𝑞𝑖−1 𝑙𝑐⁄ , 𝑖 = 1. . 𝑁 resulting in a 

modified stiffness matrix 𝑲 = 𝑺𝑲′𝑺−1 with 𝑆 being a matrix of coordinates transformation. 

The fracture condition has the form: |𝑢𝑖(𝑡)| > 1, 𝑖 = 1. .𝑁. This way, the following problem 

is solved if vector 𝑼 = ( 𝑢1, 𝑢2, . . , 𝑢𝑁) is introduced: 

𝑼̈ + 𝑲𝑼 = 𝟎 

𝑢𝑖(𝑡 = 0) = 1

𝑢𝑖̇ (𝑡 = 0) = 0
  𝑖 = 1. . 𝑁 

𝑢0(𝑡) = 0 

|𝑢𝑖(𝑡)| > 1, 𝑖 = 1. . 𝑁 

 

 

(3) 

Solution of the system (3) is sought in form  

𝑼(𝒕) =∑𝑐𝑗𝑹𝒋cos (𝜔𝑗𝑡)

𝑛

𝑗=1

 (4) 

where 𝜔𝑗  are the system eigenfrequencies, 𝑹𝒋 = (𝑟1
(𝑗)
, 𝑟2
(𝑗)
, . . , 𝑟𝑁

(𝑗))
𝑻

 are corresponding 

eigenvectors and 𝑐𝑗  is the set constants evaluated using the initial conditions.  

The eigenfrequencies are calculated from eigenvalues 𝜆𝑗 of the system stiffness matrix 

𝑲: 𝜔𝑗 = √𝜆𝑗 . The eigenvalues of 𝑲 are calculated from equation 

𝐷𝑒𝑡(𝑲 − 𝜆𝑬) = 𝐷𝑒𝑡(𝑲′

− 𝜆𝑬) = 0 
(5) 

If we put 𝛼 = 2 − 𝜆, (5) can be rewritten explicitly in the following way: 

|
|

𝛼 −1 ⋯ 0 0
−1 𝛼 −1 ⋯ 0

⋱ ⋱ ⋱
0 −1 𝛼 −1
0 0 ⋯ −1 𝛼 − 1

|
| = 𝐷𝑁 = 0 (6) 

In (6) 𝐷𝑁 is determinant of order 𝑁. One may note that a recursive equation can be 

composed for a determinant of order 𝑘: 

𝐷𝑘 =  𝛼𝐷𝑘−1 − 𝐷𝑘−2 (7) 

and the following relations hold: 𝐷0 = 1,𝐷1 = 𝛼 − 1 . The equation (7) is reduced to a 

quadratic equation 𝑝2 − 𝛼𝑝 + 1 = 0 with roots 𝑝1,2 using substitution 𝐷𝑘 = 𝑝
𝑘. This way 

the following expression is obtained from (6): 

𝐷𝑁 = 𝑏1𝑝1
𝑁 + 𝑏2𝑝2

𝑁 = 0 (8) 

Where 𝑏1 and 𝑏2 are constants to be evaluated using conditions 𝐷0 = 1, 𝐷1 = 𝛼 − 1 and 

substitution 𝛼 = 2cos (𝜃). Equation (8) yields the following formula for eigenvalues of the 

stiffness matrix: 

𝜆𝑘 = 2 − 2𝑐𝑜𝑠 (
𝜋(2𝑘 − 1)

2𝑁 + 1
) , 𝑘 = 1. .𝑁 (9) 

and thus, we obtain the formula for eigenfrequencies of the studied system: 
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𝜔𝑘 = 2𝑠𝑖𝑛 (
𝜋(2𝑘 − 1)

4𝑁 + 2
) , 𝑘

= 1. . 𝑁 

(10) 

For components of the eigenvectors of matrix 𝑲 the following equation holds: 

𝑟𝑖
𝑗
= 𝑃𝑖−1(𝑥𝑗) − 𝑃𝑖−2(𝑥𝑗) (11) 

where 𝑥𝑗 = (2 − 𝜆𝑗)/2 and 𝑃𝑘(𝑥) is a k-order Chebyshev polynomial of second kind, which 

can be expressed in the following way: 

𝑃𝑘(𝑦)

=
sin ((𝑘 + 1) arccos(𝑦))

sin (arccos(𝑦))
 

(12) 

Thus, the following expression can be obtained for the components of eigenvectors 𝑹𝒋: 

𝑟𝑖
𝑗
=
𝑐𝑜𝑠 (

𝜋(2𝑖 − 1)(2𝑗 − 1)
4𝑁 + 2 )

𝑐𝑜𝑠 (
𝜋(2𝑗 − 1)
4𝑁 + 2 )

, 𝑖 = 1. . 𝑁 (13) 

In order to evaluate constants 𝑐𝑗  to satisfy the initial conditions the following system 

should be solved accounting for (11): 

 

(

𝑃0(𝑥1) 𝑃0(𝑥2) ⋯ 𝑃0(𝑥𝑁)

𝑃1(𝑥1) − 𝑃0(𝑥1) 𝑃1(𝑥2) − 𝑃0(𝑥2) ⋯ 𝑃1(𝑥𝑁) − 𝑃0(𝑥𝑁)
⋮ ⋮ ⋮ ⋮

𝑃𝑁−1(𝑥1) − 𝑃𝑁−2(𝑥1) 𝑃𝑁−1(𝑥2) − 𝑃𝑁−2(𝑥2) ⋯ 𝑃𝑁−1(𝑥𝑁) − 𝑃𝑁−2(𝑥𝑁)

)(

𝑐1
𝑐2
⋮
𝑐𝑁

) = 

= (

1
1
⋮
1

) = (

𝑃0(1)

𝑃1(1) − 𝑃0(1)
⋮

𝑃𝑁−1(1) − 𝑃𝑁−2(1)

) 

(14) 

 

If the second order Chebyshev polynomials are explicitly written and elementary matrix 

operations are performed, the system (14) is reduced to the system with a Vandermonde 

matrix: 

(

1 1 ⋯ 1
𝑥1 𝑥2 ⋯ 𝑥𝑁
⋮ ⋮ ⋮ ⋮

𝑥1
𝑁−1 𝑥2

𝑁−1 ⋯ 𝑥𝑁
𝑁−1

)(

𝑐1
𝑐2
⋮
𝑐𝑁

) = (

1
1
⋮
1

) (15) 

 

Constants 𝑐𝑗  can be evaluated from (15) using Cramer rule and formula for the 

determinant of the Vandemonde matrix: 

 

𝑐𝑗 =
(1 − 𝑥1)⋯(1 − 𝑥𝑗−1)(1− 𝑥𝑗+1)⋯ (1 − 𝑥𝑁)

(𝑥𝑗 − 𝑥1)⋯ (𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗+1)⋯ (𝑥𝑗 − 𝑥𝑁)
 (16) 

 

Let’s put 𝑀𝑁(𝑥) = 2
𝑁∏ (𝑥 − 𝑥𝑘)

𝑁
𝑘=1 . Then (16) can be rewritten: 
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𝑐𝑗 =
𝑀𝑁(1)

𝑀𝑁
′(𝑥𝑗)(1 − 𝑥𝑗)

 
(17) 

 

Considering the fact that 𝑀𝑁(𝑥) has zeros at points 𝑥𝑗  and multiplier 2𝑁, one may 

conclude that 𝑀𝑁(𝑥) = 𝑃𝑁(𝑥) − 𝑃𝑁−1(𝑥) and thus one can deduce formula for constants 𝑐𝑗  

taking into account that 𝑀𝑁(1) = 1: 

𝑐𝑗 =
(−1)𝑗+12sin(

𝜋(2𝑗 − 1)
2𝑛 + 1

) cos(
𝜋(2𝑗 − 1)
4𝑛 + 2

)

(2𝑛 + 1)(1 − 𝑐𝑜𝑠 (
𝜋(2𝑗 − 1)
2𝑛 + 1

))

 (18) 

Now general solution of the problem (3) is the following: 

𝑢𝑖(𝑡) =
2

(2𝑁 + 1)
∑

(−1)𝑗+1sin(𝛽𝑗)cos (
𝛽𝑗
2
(2𝑖 − 1))

(1− cos(𝛽𝑗))

𝑛

𝑗=1

cos(𝜔𝑗𝑡), 

𝛽𝑗 =
𝜋(2𝑗 − 1)

2𝑁 + 1
 

(19) 

In (19) 𝑢𝑖(𝑡) stands for deformation of the chain link with number 𝑖.  

2.2 Forced chain oscillations, inhomogeneous system of equations.  

The following problem is considered: a chain of oscillators with 𝑁 links and a fixed end is 

loaded with an arbitrary force 𝑓(𝑡) applied to the chain free end (Fig. 2). 

 

Fig. 2. Chain loaded with an arbitrary force 𝑓(𝑡). 

The system of dimensionless equations describing deformation of the chain links is the 

following: 

𝑼̈ + 𝑲𝑼 = 𝑭(𝒕) = (0,0, . . , 𝑓(𝑡))
𝑇

 

𝑢𝑖(𝑡 = 0) = 0

𝑢𝑖̇ (𝑡 = 0) = 0
  𝑖 = 1. . 𝑁 

𝑢0(𝑡) = 0 

 

 

(21) 

In order to solve system (20) an auxiliary homogeneous system of differential equations 

with modified initial conditions is introduced and solved following Duhamel’s method 

(system inhomogeneity is transferred to the initial conditions [7]:  

𝑾̈ + 𝑲𝑾 = 𝟎 

𝑤𝑖(𝑡 = 0) = 0, 𝑖 = 1. . 𝑁 

𝑤𝑖̇ (𝑡 = 0) = 0, 𝑖 = 1. . 𝑁 − 1 

 (22) 
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𝑤𝑁̇(𝑡 = 0) = 𝑓(𝑝) 

𝑤0(𝑡) = 0 
 

where 𝑝 is an arbitrary real number. Systems (21) and (22) share stiffness matrix 𝑲 with the 

system solved in the previous section. Solution of (21) is further obtained as a convolution 

of solution of (22). 

Solution steps for (22) are similar to those for (3). The general solution is sought in form  

𝑾(𝒕) =∑𝑎𝑗𝑹𝒋sin (𝜔𝑗𝑡)

𝑁

𝑗=1

 (23) 

where eigenfrequencies and eigenvectors 𝜔𝑗  and 𝑹𝒋 are evaluated according to formulas (10) 

and (13). In order to obtain the solution constants 𝑎𝑗  should be calculated satisfying the initial 

conditions. Let’s put 𝑏𝑗 = 𝑎𝑗𝜔𝑗 . Then the system for 𝑏𝑗 reads as:  

 

 (
𝑃0(𝑥1) 𝑃0(𝑥2) ⋯ 𝑃0(𝑥𝑁)

𝑃1(𝑥1) − 𝑃0(𝑥1) 𝑃1(𝑥2) − 𝑃0(𝑥2) ⋯ 𝑃1(𝑥𝑁) − 𝑃0(𝑥𝑁)
⋮ ⋮ ⋮ ⋮

𝑃𝑁−1(𝑥1) − 𝑃𝑁−2(𝑥1) 𝑃𝑁−1(𝑥2) − 𝑃𝑁−2(𝑥2) ⋯ 𝑃𝑁−1(𝑥𝑛) − 𝑃𝑁−2(𝑥𝑁)

)(

𝑏1
𝑏2
⋮
𝑏𝑁

) = (

0
0
⋮

𝑓(𝑝)

) (24) 

 

In (24) 𝑥𝑗 = (2 − 𝜆𝑗)/2 and 𝑃𝑘(𝑥) is a k-order Chebyshev polynomial of second kind. 

As in the previous case (24) is reduced to a system with a Vandermonde matrix: 
 

(

1 1 ⋯ 1
𝑥1 𝑥2 ⋯ 𝑥𝑁
⋮ ⋮ ⋮ ⋮

𝑥1
𝑁−1 𝑥2

𝑁−1 ⋯ 𝑥𝑁
𝑁−1

)(

𝑏1
𝑏2
⋮
𝑏𝑁

) = (

0
0
⋮

𝑓(𝑝)/2𝑁−1
) (25) 

 

If the Cramer’s rule is applied and function 𝑀𝑁(𝑥) = 2
𝑁∏ (𝑥 − 𝑥𝑘)

𝑁
𝑘=1  is introduced, the 

following formula holds: 

𝑏𝑗 =
2𝑓(𝑡)

𝑀𝑁′(𝑥𝑗)
 (26) 

Thus, if 𝑀𝑁(𝑥) is expressed using 𝑃𝑘(𝑥), final formula for the constants 𝑎𝑗  can be written: 

𝑏𝑗 =
(−1)𝑗+14 cos2 (

𝜋(2𝑗 − 1)
4𝑁 + 2 )𝑓(𝑡)

(2𝑁 + 1)
 

(27) 

Since the auxiliary system is explicitly solved, solution to the initial system (21) can be 

written: 

𝑼(𝒕) =∑𝑎𝑗𝑹𝒋∫sin (𝜔𝑗(𝑡 − 𝑠)) 𝑓(𝑠)𝑑𝑠

𝑡

0

𝑁

𝑗=1

 (28) 

The following loading function 𝑓(𝑡) is considered if pulse load is studied: 
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Fig.3. Loading function: pulse with duration 𝑇. 

Then (28) is transformed into the following expression: 

𝑼(𝒕) =

{
 
 

 
 ∑

𝑎𝑗𝑹𝒋

𝜔𝑗

𝑁

𝑗=1

(1 − cos(𝜔𝑗𝑡)), 𝑡 < 𝑇

∑
𝑎𝑗𝑹𝒋

𝜔𝑗

𝑁

𝑗=1

(cos(𝜔𝑗(𝑡 − 𝑇)) − cos(𝜔𝑗𝑡)) , 𝑡 ≥ 𝑇

 (29) 

Thus, (29) is a formula for deformation of links of the chain subjected to pulse load. 

3 Comparison with solutions for an elastic rod. 

In this section formulas (19) and (29) will be used to evaluate deformations in particular chain 

links. Moreover, these solutions will be compared to deformations of an elastic rod, subjected 

to similar loads. The rod can be regarded as a continuous counterpart of the chain. 

A prestressed elastic rod is a complete analogue of the chain problem considered in 2.1. 

A release wave propagation in the homogenously deformed elastic rod of length 𝑙 with model 

material parameters (elastic modulus and density equal 1) is considered. If displacements of 

the rod points are described by function 𝑈(𝑥, 𝑡) and deformations by 𝜀(𝑥, 𝑡) and sealing of 

the rod end 𝑥 = 0 is supposed, the following initial boundary value problem can be stated:  
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𝜕2𝑈(𝑥, 𝑡)

𝜕𝑥2
=
𝜕2𝑈(𝑥, 𝑡)

𝜕𝑡2

𝑈(𝑥, 0) = 𝑥 ⇒ 𝜀(𝑥, 𝑡) = 1
𝜕𝑈(𝑥, 𝑡)

𝜕𝑡
|
𝑡=0

= 0

𝑈(0, 𝑡) = 0
𝜕𝑈(𝑥, 𝑡)

𝜕𝑥
|
𝑥=𝑙

= 𝐻(−𝑡)

 (30) 

Additionally, the following fracture condition is set: fracture takes place if |𝜀(𝑥, 𝑡)| > 1. 

Solution of (30) can be obtained as a combination of travelling and reflected waves. In figure 

4 deformation of the first link and deformation of the rod sealing are shown. It is clear that 

deformations of the elastic rod never exceed the initial value 1 and thus fracture never takes 

place, while deformation of the first link of the chain exceeds critical value by about 50% 

leading to the system failure. This way, equal loading conditions result in fracture for the 

discrete system, while its continuous analogue remains intact. 

 

 

Fig. 4. Deformation of the first chain link (solid line) and deformation of rod in a sealed 
point (dashed line). Arrow indicates the link fracture. Results for 50 links and a rod with 

length 𝑙 =50 are shown. 

Now the rod is supposed to be loaded by a deformation pulse. Model material is used and 

the rod is supposed to be sealed from one end. Thus, the initial boundary value problem reads 

as: 
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𝜕2𝜀(𝑥, 𝑡)

𝜕𝑥2
=
𝜕2𝜀(𝑥, 𝑡)

𝜕𝑡2

𝜀(𝑥, 0) = 0
𝜕𝜀(𝑥, 𝑡)

𝜕𝑡
|
𝑡=0

= 0

𝑈(0, 𝑡) = 0

𝜀(𝑙, 𝑡) = 𝑓(𝑡) = 𝐻(𝑡) − 𝐻(𝑡 − 𝑇)

 (31) 

If d’Alembert method is applied, one can find that an undistorted deformation pulse 𝑓(𝑡) 
travels through the rod and no fracture occurs, since |𝜀(𝑥, 𝑡)| > 1 fracture condition is 

considered. On the contrary, solution for the chain shows distortion of the pulse, which leads 

to failure of the link with number 𝑁. This phenomenon is shown in figure 5 for a chain 

consisting of 100 links, pulse duration 𝑇 = 10 and rod with length 𝑙 = 100. 

 

 

Fig. 5. Deformation of the chain link with number 𝑁 (solid line) and rod deformation at 

point 𝑥 = 𝑙 (dashed line). Link fracture is indicated by an arrow. In this case number of 

links 𝑁 = 100 and rod length 𝑙 = 100. 

This way pulse load applied to a discrete system may lead to failure, while continuous 

system remains intact for the identical load.  

4 Conclusion 

Dynamic fracture of linear oscillator chains is considered in the work. In particular effect 

related to discreetness of the system is studied. Two load cases are considered: abrupt release 

of a prestressed chain and pulse loading of an undeformed chain. For the both cases analytical 

solutions for the chain link deformations are obtained. These solutions are compared to 
results for a continuous analogue of chain – elastic rod. It is demonstrated that the wave 
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travelling through a chain (resulting either from abrupt release or from deformation pulse 

applied) is distorted comparing to an elastic rod, which can result into fracture. On the 

contrary, such effect is not possible for the continuous system.  

This effect can be accounted for when structures with explicit discreetness and periodicity 

are designed and studied, e.g. construction facilities in civil engineering. A railway train 

could serve as another example of possible application of the studied discrete problem. A 

railway train moving with a constant velocity can be modeled by a statically uniformly 

deformed chain of oscillators. Thus, a sudden break of a damaged or worn coupling device 

can potentially lead to failure of normally functioning coupling devices.  
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