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Abstract. The article offers an information about the work carried out on 

technical monitoring of the city sewerage system tunnel in the framework 

of the actual problem of recreating the objects of cultural heritage of St. 

Petersburg, which fall into the protected zone of underground engineering 

networks. The purpose of the study is to identify values of the stress-strain 

state of the tunnel lining at various stages of construction of a cultural 

heritage object located on the earth's surface in the immediate nearness. 

For formation of a base of the analyzed values was undertaken geolocation 

of ground massive, conducted geodetic measurements, defined the 

deformation of the soil by inclinometer boreholes, was obtained graphs of 

precipitation the soil massive, developed by setup technology for strain 

gauge sensors linear displacement inside the tunnel, worked out the 

mathematical model in the specialized software. Analysis of the obtained 

results allowed us to associate values of the stress-strain state of the 

collector tunnel effect from the buildings under construction and structures, 

as well as to identify the actual task for further research to develop 

methods of rapid diagnosis of the stress-strain state of tunnel lining 

structures in terms of their special mode of operation. 

1 Introduction  

The erection of new capital structures within the established high-density development 

typical of St. Petersburg and its well-developed infrastructure is a pressing issue of city 

planning. The main technological challenges arising while implementing these projects are 

associated with the unique geological structure of the city ground, abundance of rivers, a 

large number of legally protected objects, and high density of general utilities. 

Sometimes, the erection or reconstruction of objects having an industrial, civil, transport 

or other purpose affect the underground structures and communications. The mostly 

affected objects of the city infrastructure are such vital facilities as the water supply, sewer 

and cable networks equipped with tunnel-like collectors and located at the depth of 2 to 90 

meters from the daylight surface. The total development of these networks accounts to 

several hundreds of kilometers [1, 2]. 
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The vast variety of collectors affected by the construction process contains a network of 

pipelines and tunnels, tunnel shafts, shield chambers and bore holes, emergency overflow 

facilities, etc. According to the functionality, the majority of the public utility tunnels refer 

to the water supply and sewage networks. Due to structural specificity of these collectors, 

the most common way of their erection is to arrange them under the road surfaces, in the 

right-of-way areas, along the river embankments, under the riverbeds, and in parks and 

recreational zones. 

Capital construction implemented in the immediate proximity to the existing 

underground facilities (especially those of high economic value) and having a strong effect 

on them can result in a risk of malfunction of the essential city utilities, which in its turn 

can lead to serious negative consequences [2, 3]. Thus, an important engineering task is a 

thorough geomechanical, geophysical and geodetic study of the structures and the 

parameters of compensational stress relieving systems, which are designed to ensure safety 

and quality of works in the process of reconstruction of cultural heritage buildings with an 

effect on the existing tunnel communications. A solution to this problem can contribute a 

lot to the rational use of land in St. Petersburg. 

The analysis carried out helped to detect 38 city locations where there is a future 

probability of re-erection of lost objects of cultural heritage. The major part of them accrues 

to the city center and adjacent districts of St. Petersburg (Fig. 1). The analysis showed that 

not less than 30% of the objects, which might be re-erected in the mid or long-term period, 

could have an effect on the existing sewer tunnels. In such cases a special individual 

approach is needed for reconstruction of cultural heritage objects. This approach should be 

capable of preserving the available genuine fragments of the lost buildings, ensuring safety 

of construction works, and minimizing the influence of construction on the technical 

condition of the sewer tunnels. The general industrial approaches to this kind of challenges 

are well-known. Nevertheless, the particular cases characterized by individual engineering 

and technical features present a great interest. 

 

Fig. 1. St. Petersburg city center plan showing the lost objects of cultural heritage overlaying the 

scheme of tunnel-like water sewage networks 
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2 Description of the object of study 

An example of modern approach to optimization of sewer tunnels performance while 

constructing surface buildings was shown by re-erecting of an object of cultural heritage – 

the Church of Our Lady Joy of All Who Sorrow, located at: 22–24, Obukhovskoy Oborony 

ave., Nevsky District, St. Petersburg (Fig. 2). The original building in the Russian Revival 

style was constructed in 1894–1898 to the project of architects A.I. von Hogen and 

A.V. Ivanov. In November 1932 the church was closed and later demolished. Once the 

archeological excavations were finished, the foundation of the lost church was declared a 

significant site of local relevance. In 2015 the re-erection work was begun. Working on the 

project solutions for re-erection of the cultural heritage building the specialists established 

that the church was located above the mainline sewer tunnel carrying waste water collected 

from the most part of the Nevsky District of St. Petersburg. 

 

 

Fig. 2. The general view and the cross-section of the Church of Our Lady Joy of All Who Sorrow 

before demolition 

In 1966 a need appeared in arranging waste water sewage system, which was caused by 

the active development of the left-bank part of the Nevsky Disctrict of Leningrad. So, a 

TKK23 sewer tunnel was constructed partly crossing the foundation of the church 

disassembled in 1933. The sewer tunnel structure consists of prefabricated reinforced 

concrete lining of circular cross-section having the diameter of 3,230 mm, equipped with 

reinforced concrete jacket and made up by shotcrete on steel lattice (Fig. 3). The part of the 

sewer tunnel affected by the church in the interval between shafts #1/27 and #18 is located 

at the depth of -4.80 m to -4.64 m and lies predominantly within weak quaternary deposits, 

which required applying special methods of work using caisson technology (tunneling with 

compressed air)[4]. 
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Fig. 3. TKK23 sewer tunnel lining cross-section affected by the re-erection of the object of cultural 

heritage 

Today, the TKK23 sewer tunnel serves as an element of St. Petersburg sewage network 

and is the only mainline discharge of waste water collected from the left-bank part of the 

Nevsky District having no redundant sewage systems. This further contributes to the 

significance of monitoring the collector due to its operational conditions being changed. 

The average hourly flow rate within the considered interval equals to 5,500 m3 per hour at 

dry weather. 

 The main technological challenge, which aroused when re-erecting the church, was 

caused by a minor rock pillar lying between the preserved foundation and the sewer lining, 

the latter being less than 800 mm thick. Another trouble was weak host ground. The 

complexity of hydrogeological conditions of the construction site derived from several 

aquifers in the cross-section and the proximity of the Neva River. As it was crucial to retain 

the performance properties of the existing sewer, the preparatory and construction works 

were subject to very strong requirements.  

The problem might have been solved by developing and implementing compensational 

stress relieving systems above the existing sewer tunnel, which were designed to minimize 

the impact of the newly-constructed building weight and to ensure safety of construction 

works. Thus, in the process of re-erecting the Church of Our Lady Joy of All Who Sorrow 

it was proposed to establish a bridging made of tubular girders with 530 mm in diameter 

that should have been installed within the rock pillar between the preserved foundation of 

the church and the existing sewer lining. Moreover, to decrease the load acting upon the 

sewer some reinforced concrete piles with casing pipes (800 mm in diameter) were sunk to 

the depth of 30 m. These had to withstand the admissible tunnel deformations by 

transferring the load from the church to the low-compressible bottom soil under the sewer 

[5, 6]. 

It was impossible to excavate the daylight surface in order to install a protection screen. 

Therefore, it was decided to apply closed tunneling technology, which implied jacking 

tubular sections through the ground with a hydraulic jack. For this purpose starting and 
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finishing pits with grooved bracing were arranged on the sides of western and eastern 

facades of the re-erected building (Fig. 4). 

Fig. 4. Layout of reinforcement girders under the church foundation 

3 The study and the analysis of its results 

In the course of installing the stress relieving structure some serious drawbacks of the 

accepted solutions were detected. Thus, the works were suspended and it was decided to 

improve the project. 

The operational analysis of the sewer tunnel structures and the host ground condition 

was contracted to the Tunnels and Underground Railways Department, Emperor 

Alexander I St. Petersburg State Transport University. In 2017–2019 the Department was 

monitoring the technical condition of the sewer lining. To ensure preservation of the sewer 

and to make provisions for real-time adjustment of the work schedule the Department 

organized a complex system of monitoring that involved geotechnical equipment designed 

for geodetic and automated control of the sewer technical condition [7]. 

Specialists of the Tunnels and Underground Railways Department processed materials 

of the sewer inspections, organized monitoring of the sewer technical condition, and 

developed a mathematical model of the existing sewer for the purpose of analysis. This 

mathematical model helped to swiftly estimate the influence of deformations on the stress-

strain behavior of the sewer lining. 

At an early stage of geotechnical monitoring preferential zones for placing recording 

devices were determined by means of geolocation in various cross-sections. This helped to 

specify the sewer lining parameters and to assess the condition of the surrounding host 

ground.  

The further step included in-situ assessment of the sewer tunnel condition; at this stage 

geodetic marks were installed to provide monitoring of the ground and the church 
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foundation settlements. For this purpose the engineers developed a system of geodetic 

benchmarks that were attached to the reinforcement tubular girders jacked through the soil 

under the church foundation (Fig. 5); 

Fig. 5. A geodetic mark scheme 

The analysis of data obtained while observing the geodetic marks resulted in the 

diagrams of the ground and the church foundation settlements (Fig. 6). 

Fig. 6. A diagram of movements of geodetic marks control points 

Thus, the monitoring performed from December 2017 to December 2019 showed that 

ground settlements within the project area occurred in two stages, which was explained by 

the technology applied for arranging pile foundation of the re-erected church. The 

6

E3S Web of Conferences 157, 02008 (2020)
KTTI-2019

https://doi.org/10.1051/e3sconf/202015702008



maximum benchmark settlements in the starting and finishing pits were -19.5 mm, whereas 

in the altar area of the church the settlement was -32.4 mm. 

Further works were focused at ultrasonic tomographic identification of cavities beyond 

the lining and at installation of a system of strain-gauge motion sensors in the arch area of 

the tunnel, which could help to monitor the properties of the lining and to transfer the 

obtained data to the surface (Fig. 7). However, due to unstable ventilation within the 

actively used sewer tunnel installation of sensors appeared non-feasible. 

Fig. 7. 

Installation layout of motion sensors within the sewer tunnel 

For the purpose of real-time detection of deformations six survey bores were made 

around the sewer at the distance of 1 m from the tunnel lining, including four bores in the 

altar area of the church. 

To collect objective and evident data on deformations the survey measurement bores 

were paired along the sewer axis and placed close to the church columns where the highest 

load was expected (Fig. 8). 

In the course of study the maximum movements were detected at the survey bore #4, 

which accounted 3 mm at the 5–6 m depth along the sewer X-axis and 4 mm at the 5–6 m 

depth along the sewer Y-axis. 

Fig. 8. Layout of survey bore sensors 
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In order to perform real-time analysis of the sewer lining stress-strain behavior and 

basing on the survey data and geodetic marks the specialists undertook mathematical 

simulation with Plaxis software. The task was being solved in two-dimensional formulation 

by means of finite elements (FE) method (Fig. 9). 

With the area of construction process influence on the sewer tunnel having been 

considered, a fragment of soil was selected for calculation aimed at determining 

dependencies between the deflections of tubes with benchmarks and the strains in the 

lining. These helped to obtain a strain figure of the soil and the lining (Fig. 10) and to 

formulate evaluation criteria for the construction works undertaken in the process of re-

erecting the surface building [8]. 

Fig. 9. The accepted analytic model: 1 – fill-up ground: soft sandy loam; 2 – silty sand; 3 – very soft 

loam; 4 – banded sluffing soft loam; 5 – banded sluffing soft loam; 6 – very soft laminated loam; 7 – 

soft sandy loam; 8 – semi-solid soft loam; 9 – sewer lining; 10 – grooved bracing; 11 – pipe, 

Ø530 mm; 12 – existing foundation of the church.  

Fig. 10. Strain figure according to the results of geodetic monitoring. 
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4 Conclusion 

The undertaken complex of in-situ assessments helped to detect indicators of the sewer 

tunnel stress-strain behavior at different stages of re-erection of the cultural heritage 

building. The analysis showed that the negative impact produced on the sewer tunnel lining 

was minimized by the accepted technology of foundation reinforcement. Nevertheless, 

today in St. Petersburg we see a distinct trend of re-erecting objects of cultural heritage 

located in the exclusion zones of sewer tunnels. So, the challenge remains unchanged; and 

it requires developing methods of real-time diagnostics of stress-strain behavior of tunnel 

linings operating in a special mode that is characterized by daily and seasonal variability of 

waste water level and by increased gas contamination of the interior space. Due to these 

factors sometimes it is impossible to perform monitoring inside the underground facility, 

which in its turn reduces integrity and trustworthiness of the structural state assessment. It 

is especially relevant as far as the spatial behavior of the structure is concerned, when the 

maximum tensile stress appears in the bottom zone of the tunnel that is beyond the reach of 

visual and instrumental control [9]. It should also be noted that during the tunnel operation 

period this kind of stress can result in the lining consistency defects, which can lead to 

water leakage outside the lining and further expansion of soil and – in the long run – 

additional soil settlements. 

Based on the abovementioned, the aim of further improvement of the stress-strain 

behavior assessment methods applied to the sewer tunnels lining is increasing their 

objectiveness. This could be reached by analyzing results of mathematical simulation in 

three-dimensional formulation. 
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