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Abstract. In the paper, an adaptive hybrid heuristic (behavioral) method for 
detecting small traffic anomalies in high-speed multiservice communication 
networks, which operates in real time, is proposed and investigated. The 
relevance of this study is determined by the fact that network security 
management processes in high-speed multiservice communication networks 
need to be implemented in a mode close to real-time mode, as well as 

identifying possible network security threats in the early stages of the 
implementation of possible network attacks. The proposed method and 
algorithm belong to the class of adaptive methods and algorithms with 
preliminary training. The average relative error in estimating the evaluated 
traffic parameters does not exceed 10%, which is sufficient for the 
implementation of operational network management tasks. Anomalies of the 
expectation of traffic intensity and its dispersion are identified if their 
valuesexceed the normal values by 15% or more, which makes it possible to 
detect possible network attacks in the early phases of their implementation, 

for example, at the stage of scanning ports and interfaces of the attacked 
system. The procedure for detecting anomalous traffic behavior is 
implemented based on the Mamdani's method of hierarchical fuzzy logical 
inference. A study of the proposed method for detecting anomalous behavior 
of network traffic showed its high efficiency. 

1 Introduction 

The successes achieved in the development of telecommunication and communication 

technologies have led to the creation and implementation of the concept of a multiservice 

communication network (MCN), the basis of which is packet IP networks that integrate 

various voice, data and multimedia transmission services [1, 2]. However, the emergence of 

a large number of additional services at the MCN makes the actual problem of reliable 

provision of its network and information security (NIS) [3]. 

                                                        
* Corresponding author: serg123_61@mail.ru  

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 157, 04027 (2020)  https://doi.org/10.1051/e3sconf/202015704027
KTTI-2019

mailto:serg123_61@mail.ru


Traffic in the MCN is very diverse [4 - 6]. It consists, among other things, of multimedia 

traffic, which is very sensitive to delays, data transmission traffic, signaling information 

traffic, email traffic. At the same time, the specified requirements for the quality of services 

must be fully implemented. There are objective difficulties in building the NIS of MCN. 

These difficulties are caused by the complexity of the MCN structure, the large spatial scope 

of the network infrastructure, the need for quick and high-quality analysis of a large number 

of various dynamically changing network, information characteristics and parameters. 

Therefore, the operational continuous assessment and detection of the anomalous 

behavior of high-speed network traffic with a priori unknown, dynamically changing 

characteristics is one of the key tasks of managing the MCN network, as well as its NIS, is 

an urgent scientific problem. 

2 Analysis of methods for assessing the characteristics and 
parameters of traffic in high-speed MCN 

As is known [5, 6], traffic in the MCN can be approximated using probability distributions 

of Poisson, Pareto, Weibull, log-normal distribution and exponential distribution. Traffic in 

the MCN is non-stationary in its nature, and the mathematical models that adequately 
describe its behavior are non-linear stochastic models [6]. This fact makes it difficult to 

implement procedures for evaluating the parameters and characteristics of network 

multiservice traffic with the required quality under conditions of a priori uncertainty both 

with respect to its current probabilistic distribution law and its parameters. 

One of the constructive approaches to solving the problem of estimating the vector 

parameters of random processes with nonlinear observation models is the conditional non-

linear Pareto - optimal filtering method [7, 8]. The essence of this approach is that the 

estimation of a vector unknown parameter is carried out in two stages. At the first stage, the 

function of the current forecast of estimates of the values of the vector parameter is 

calculated. At the second stage, with the help of corrective functions and the obtained 

additional posterior information on the values of these estimates, they are corrected. The 

choice of the class and type of assessment functions for the current forecast, the class and 
type of correction functions is quite free and is determined by the specific formulation of the 

problem being solved. 

In this study, based on the concept of conditional non-linear Pareto - optimal filtering, a 

method and algorithm for detecting anomalous traffic behavior are developed using joint 

estimates of the current value of the mathematical expectation and dispersion (standard 

deviation (SD)) of the MCN traffic intensity. The adaptation of correction functions to 

unknown characteristics of the MCN traffic intensity is proposed to be performed using 

pseudo-gradient procedures, the general theory of which was laid down in [9–11]. In this 

case, the adjustment of the parameters of the correcting functions depending on the 

parameters of the random sequence is carried out using Takagi-Sugeno fuzzy logic inference 

[12, 13], taking into account the dynamics of changes in their values. Using the fast Fourier 
transform method [14], the spectral power densities of the obtained estimates of the values 

of the mathematical expectation and dispersion of the MCN traffic are located in a sliding 

window. By their increments, which are determined in two sliding windows, the anomalous 

behavior of the traffic of the multiservice communication network is determined. 

3 Method and algorithm for detecting traffic anomalies in high-

speed multiservice communication networks 
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Let the MCN traffic observations be presented in the form of a random sequence (RS) x(i) 

having finite mathematical expectation and dispersion given at discrete time instants 

t = i ={1, 2, …, n,..} and described additively – multiplicatively a model having the form: 

x(i) = (i)w(x(i-1))+(i), (1) 

where w(*) is a random function of the observations, (i) is a random variable, and (i) is 

the interference of observations with zero mathematical expectation and finite dispersion. 

It is necessary to construct a vector recursive procedure for estimating the mean values 

of the mathematical expectation of a random sequence x(i) and its standard deviation by the 

criterion of the minimum mean square error, of the form: 

J(i) = M{𝜀}̅ = {M (𝑚(𝑖) –  𝑚̂(𝑖))2min, M(𝜎(𝑖) – 𝜎̂(𝑖))2min }, (2) 

where 𝑚̂(𝑖), 𝜎̂(𝑖) are the estimates of the mathematical expectation and standard deviation 

of the random sequence x(i) at step i, and 𝑚(𝑖), 𝜎(𝑖) are their true values at this step. 

The forecast function for the current value of the mathematical expectation of the random 

sequence is defined as: 

𝑚̂(𝑖) =
1

𝑁
 ∑ 𝑥(𝑖 − 𝑘),   

𝑁

𝑘=1

𝑖 =  1, 2, . . , 𝑛, . ., (3) 

where N is the size of the sliding window, which is selected relatively small size [6]. 

Further, the forecast of the estimation of the standard deviation of the random sequence 

in step i is made in the same sliding window: 

𝜎̂(𝑖) = √
1

𝑁 − 1
∑ 𝑥2(𝑖 − 𝑘) −

𝑁

𝑘=1

(
1

𝑁
∑ 𝑥(𝑖 − 𝑘))2

𝑁

𝑘=1

 

 

(4) 

Further consideration of the construction of the corrective procedure will be carried out 

for the component of the value of the mathematical expectation of functional (2), with a 

generalization to the vector case. 

The value of the functional 𝐽(𝑚̂(𝑖)) may not be observable, and only the implementation 

of its gradient with a random error is available: 

∇𝑄(, 𝑚̂(𝑖)) = ∇𝐽(𝑚̂(𝑖)) +  ,  ∈ 𝑅𝑛, (5) 

where  is the error of observing the gradient. Let  be the centered, uncorrelated errors in 

estimating the gradient of the quality functional. Functionality (5) will be minimized using a 
recurrence algorithm of the form:  

𝑚̂̂ (𝑖 + 1) =  𝑚̂̂ (𝑖) −  𝜆𝑚(𝑖 + 1)∇𝑄(, 𝑚̂(𝑖 + 1)) (6) 

where ∇𝑄(, 𝑚̂(𝑖 + 1)) is a random direction in the phase space at the point 𝑚̂(𝑖 + 1), 𝑚̂̂ (𝑖) 

is the adjusted estimate of the mathematical expectation at the previous step, {𝜆𝑚(𝑖)} is a 

sequence of positive numbers, which for a stationary random sequence, must satisfy the 

conditions of Dvoretsky [9 - 11]. 

∑ 𝜆𝑚(𝑖) = ∞,    ∑ 𝜆𝑚
2 (𝑖)  <  ∞

∞

𝑖=1

∞

𝑖=1

 (7) 

In accordance with [9, 10], the vector ∇𝑄(, 𝑚̂(𝑖)) is called a pseudogradient at the point 

𝑚̂(𝑖), if the condition is satisfied at this point: 

∇𝐽(𝑚̂(𝑖 − 1))𝑀{∇𝑄(, 𝑚̂(𝑖)) 0 }, (8) 

where 𝑀{ ∗} is the operation of mathematical expectation, that is, the vector ∇𝑄(, 𝑚̂(𝑖)) on 

average is an acute angle with the gradient vector of the quality functional ∇𝐽(𝑚̂(𝑖 − 1)). 

The implementation of the quality functional at the point 𝑚̂(𝑖 + 1), in accordance with [6, 9 

- 11], can be represented as follows: 

∇𝑄(, 𝑚̂(𝑖 + 1)) =  (𝑚̂(𝑖 + 1) −  𝑚̂̂ (𝑖))2. (9) 
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After simple algebraic transformations, the recursive pseudo-gradient algorithm (PGA) for 

estimating the current value of the mathematical expectation will look like: 

𝑚̂̂ (𝑖 + 1) =  𝑚̂̂ (𝑖) +  𝜆𝑚(𝑖 + 1) ( 𝑚̂(𝑖 + 1) − 𝑚̂̂ (𝑖)) . (10) 

If the distribution density of the values of the random sequence 𝑚̂(𝑖) 𝑝(𝑚̂) is symmetric 

with respect to the mathematical expectation, then it is possible to use a pseudo-gradient 
algorithm of the form: 

𝑚̂̂ (𝑖 + 1) =  𝑚̂̂ (𝑖) +  𝜆𝑚(𝑖 + 1)𝜑 ( 𝑚̂(𝑖 + 1) − 𝑚̂̂ (𝑖)) , (11) 

where a non-decreasing monotonic function can be used as the function 𝜑(∗), for example, 

the sign function 𝜑(∗) = 𝑠𝑖𝑔𝑛 (∗). It was noted in [9–11] that the use of this function makes 

it possible to increase the stability of pseudo-gradient algorithm to errors in estimating the 

gradient of the quality functional. 

A generalization of algorithm (11) is a vector pseudo-gradient algorithm for estimating 

the parameters of a random sequence, having the form [6]: 

𝐺 (𝑖 + 1) =  𝐺 (𝑖)  + 𝑅(𝑖 + 1) × ∇𝑄(𝑖 + 1) (12) 

where 𝐺 (𝑖 + 1) is the vector of estimates of the parameters of the random sequence at step i 
+ 1, which can be represented as: 

𝐺 (𝑖 + 1) =  [𝑚̂̂ (𝑖 + 1), 𝜎̂̂(𝑖 + 1) ]
𝑇
.

 

(13) 

The matrix 𝑅(𝑖 + 1) is the diagonal matrix of step coefficients of the estimated 

parameters. 

Regarding algorithms (11) and (12), one can formulate statements that: 

1. These algorithms are pseudo-gradient algorithms. The proof of this statement is based 

on the correct verification of condition (8). A consequence of this statement is the fact that 

these procedures have all the properties of pseudo-gradient algorithms [9 - 11]. 

2. The structure of algorithms (11) and (12) is invariant with respect to the statistical 

characteristics of random sequence x(i), with an accuracy determined by the accuracy of 

identification of its parameters. The proof of this statement is based on the application of the 

central limit theorem [15]. The consequence of this statement is that for any probabilistic 

properties of traffic, the structure of the algorithm for estimating its parameters is constant, 
only its settings can change. 

To evaluate the parameters of non-stationary random sequences, condition (8) restricts 

the use of pseudo-gradient algorithm, since the pseudo-gradient algorithm must monitor 

changes in the value of traffic parameters, and not converge to their specific values. 

Therefore, it is proposed to restrict the sequence 𝑅(𝑖 + 1) from below to a constant value. As 

a consequence of choosing a limited step coefficient, the dispersion of the estimation of the 

parameters of the random sequence will also be limited from below. Therefore, it is necessary 

to find a compromise solution between the speed and accuracy of estimating the parameters 

of the random sequence [6, 9 - 11]. 

It is proposed, when choosing the step coefficient vector, to take into account the 
dynamics of changes in the estimated parameters and characteristics of the random sequence. 

Obviously, the moduli of the gradients of the components of the vector quality functional are 

proportional to the dynamic properties of the random sequence. Such dependencies are in the 

nature of hard-to-formulate tasks, therefore, it is proposed to automate the pseudo-gradient 

algorithm step coefficient adjustment using the Takagi-Sugeno fuzzy logic inference method 

or based on its particular form, the singleton method [12, 13], which has the form: 

𝑰𝑭 < 𝐺 (𝑖) ∈ 𝐷1 > 𝑶𝑹 < 𝛻𝑄(𝑖) ∈ 𝐷2 > 𝑶𝑹 < 𝜎̂(𝑖) ∈ 𝐷2 > ТО 𝑅(𝑖 + 1)
= 𝑅(𝑧) 𝑨𝑵𝑫  𝑁 = 𝑁𝑘 

(14) 

To implement these rules, the fuzzy logical inference system is preliminarily trained 

according to the experimental data obtained at the stage of its design, in test random 

sequences with known statistical parameters [6]. An increase in the size of the sliding 
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window, if such a need arises, is carried out sequentially, with a step equal to one cell of the 

sliding window. This allows us to ensure the observability of the estimated parameters of the 

random sequence. The structure of the fuzzy inference system during operation remains 

constant. 

For the obtained estimates of the mathematical expectation and dispersion of the traffic 

intensity, the power spectral density is determined: 

where NF is the basis of the fast Fourier transform. After obtaining current estimates of 

spectral powers (15), their sum is determined in successive sliding windows W1 and W2 

(Figure 1). In this figure, arrow 1 conditionally shows the direction of movement of the 

sliding windows W1 and W2. If the total power density of any random sequence (14) in 

window W1 exceeds its value in window W2 by a predetermined value, then a decision is 

made about the presence of anomalous traffic behavior. 

 

W2 W1

V2

V1

n

Ft(i)

1  

Fig. 1. W1, W2 - sliding windows, 1- direction of movement of the sliding windows; V1 and V2 - 
values of the power spectral densities in the corresponding sliding windows. 

4 Analysis of the results of an experimental verification of the 

traffic anomaly detection algorithm 

Mathematical modeling of the verification of the effectiveness of the developed algorithms 

for assessing the characteristics of the MCN traffic was carried out for bistochastic traffic 

with a log-normal distribution. In this case, the mathematical expectation and dispersion of 

the processes were modeled using first-order autoregression processes (AR-1). 

Figure 2 shows a graph of traffic intensity for a changing amplitude of mathematical 

expectation. 

𝑚̃(𝑖, 𝜔) =  ∑ {
1

𝑁𝐹

∑ 𝑚̂̂

𝑖+𝑁𝐹

𝑛=𝑖

(𝑖 + 𝑛)𝑒𝑗𝜔𝑛}

2

 

𝑁𝐹

𝑛=0

,

𝜎̃(𝑖, 𝜔) =  ∑ {
1

𝑁𝐹

∑ 𝜎̂̂

𝑖+𝑁𝐹

𝑛=𝑖

(𝑖 + 𝑛)𝑒𝑗𝜔𝑛}

2

 

𝑁𝐹

𝑛=0

, 

 

(15) 

5

E3S Web of Conferences 157, 04027 (2020)  https://doi.org/10.1051/e3sconf/202015704027
KTTI-2019



0 2500 5000 7500 10000 12500 15000
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

N

x
(i

)
A1 A2 A3

 

Fig. 2. The traffic intensity of the MCN with a log-normal distribution. Zones A1, A2 and A3 – 
the presence of traffic anomalies 

Areas A1, A2, and A3 correspond to the presence of small anomalies in the mathematical 

expectation of traffic intensity. Figure 3 shows the results of evaluating the current value of 

the mathematical expectation of the random sequence. The average relative error in 

estimating the mathematical expectation and dispersion was less than 3.8%. 
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Fig. 3. Results of the assessment of the current value of the mathematical expectation of the 
random sequence x(i). 1 – the true current value of the mathematical expectation of traffic 

intensity, 2 – the value of the estimate of the expectation of traffic intensity, 3 – the value of the 
absolute error module of the estimate of the mathematical expectation of traffic intensity. A1, A2, 
A3 – zones of abnormal behavior of the current value of the mathematical expectation of traffic 
intensity 

Figure 4 shows examples of assessing the current value of the power spectral density 

(PSD) of the sequence of estimates of the mathematical expectation of traffic intensity (1), 

as well as the values of the flags for detecting traffic intensity anomalies of the MCN (2). 
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Fig. 4. Assessment of the current value of the power spectral density (PSD) of the sequence of 

estimates of the mathematical expectation of the traffic intensity of the MCN. 1 – power spectral 
density, 2 – flag values for detecting anomalies in traffic intensity of the MCN 

In the course of computational experiments, the following results were achieved. 

The estimation of traffic intensity distribution parameters, namely, the current value of 

the mathematical expectation and dispersion, was implemented in hard real-time mode with 
an average relative error of less than 10%. The detection of a sharp, explosive change in 

traffic parameters, which is typical for the main phases of network attacks, was also detected 

in real time. The detection of small traffic anomalies, which is characteristic of the initial 

phases of network attacks, was detected with a delay of 120 - 180 μs (as shown in Figure 4), 

which is an acceptable result. The structure of the proposed method and algorithm for 

detecting the abnormal behavior of MCN traffic allows them to be implemented on parallel 

computing platforms. The developed method and algorithms have shown stable, with high 

accuracy, detection of anomalous behavior of MCN traffic under conditions of a dynamic 

change in its characteristics. 

5 Conclusion 

The obtained accuracy and dynamic characteristics of the developed method and algorithm 

ensure the detection of abnormal behavior of MCN traffic in high-speed multiservice 

communication networks with the required quality. The preliminary analysis performed in 

the work showed the possibility of hardware-software implementation of the developed 

algorithms on the existing hardware platform [16 - 18]. The most promising is the 

implementation of the algorithm as an intelligent agent for a multi-agent intelligent system 

of operational decision support. The hardware basis of such a system can be a system on a 

chip (SoC) and FPGA. 
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