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Abstract. For the functioning of any social infrastructure object, power 

supply is necessary. Therefore, such linear real estate objects as power 

lines are important elements in the urban engineering infrastructure. Linear 

objects are characterized by a considerable length, which makes it difficult 

to perform certain types of work, including monitoring. This paper 

discusses the structural elements of the overhead power lines (OHPL) and 

their inherent types of deformations. Current methods for monitoring and 

the instruments used are indicated. The disadvantages of the existing 

technology are described, which include bias data, a low degree of 

immediacy of its receipt, complexity, risk to the health of the performer. 

Alternative contact methods (using various sensors) and remote monitoring 

methods (video recording) with an indication of their shortcomings are 

analyzed. A scanning complex was performed, the results of which 

examined the possibility of using this technology as a strain monitoring 

using the example of supports and wires of overhead power lines. To do 

this, in laboratory conditions, measurements of the support tilting, the 

height of the suspension, the sag of the span, the size of the wire, and the 

length of the span were made for compliance with regulatory data. A 

conceptual basis for creating an urban digital monitoring platform for a 

network of power lines is proposed. 

1 Introduction 

The modern city is a combination of social and engineering infrastructure. The first include 

buildings designed to ensure the livelihoods of citizens, for example, houses, hospitals, 

shops, universities, schools, and the second - structures that ensure the functioning of the 

previous ones. For the functioning of any social infrastructure facility, electricity is needed. 

In this regard, important elements in the urban engineering infrastructure are power lines, 

which are divided into overhead and cable ones. This paper discusses overhead power lines 

(OHPL). 

These objects are subject to deformation due to the impact of natural (weather, 

vegetation) and anthropogenic factors (unintentional or intentional damage to supports, 
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non-compliance with technical standards during the construction of structures, illegal 

actions within the protective zone). Deformations can lead to an emergency blackout in 

social infrastructure facilities, as well as become a threat to the safety of life of citizens who 

are in the zone of damage. In this regard, there is a need to monitor the condition of 

overhead line structures in order to identify deformations, eliminate them and prevent 

accidents. 

Nowadays, overhead power lines are monitored by visual inspection and measurement 

of structural parts: supports, foundations, lightning protection cables, wires, guy wires, 

linear insulation, grounding devices, linear fittings and others (in accordance with the 

guidelines used in the Russian Federation).During the inspection, the following can be 

revealed: tilts, deformations of supports and their individual elements from the design 

position, sags, a decrease in the cross section of the design elements as a result of corrosion 

of metal elements. In this case, measurements are carried out using a caliper, a measuring 

ruler, a tape measure (for measuring the linear dimensions of individual structural elements, 

distances), a theodolite (determination of deviations of struts of supports, spans of wire 

sag), steel wire with a diameter of 1 mm (curvature of structural elements), an insulating 

rod. 

The existing monitoring method has several disadvantages: 

 subjectivity of the survey (the performer visually determines the damage first, and 

then proceeds to measure them); 

 complexity (inspection, measurement, processing of extended objects); 

 low efficiency of data collection; 

 health risk to the performer. 

In the scientific literature, there are a number of developments on alternative monitoring 

methods, which, depending on the degree of remoteness of OHPL measuring instruments, 

can be divided into three groups: remote, contact, combined. 

Remote methods include the magnetometric method (determines the defect of the 

metal), the optical method based on video recording (control of the deviation of the top of 

the support, measuring the size of the phase wires), as well as thermal imaging, measuring 

defects using robotic total stations, laser scanning [1-9]. The contact method is the 

tensometric method (the study of icy-wind effects), the use of capacitive sensors 

(monitoring the presence and thickness of the ice wall), inclinometers (for example, Nivel 

210, Nivel 220), which make it possible to determine the inclination of the support from the 

vertical axis [10-13]. The combined method - mathematical modeling (modeling wire sag 

based on sensor data). 

The disadvantages of each method will be discussed below. However, all the studied 

scientific papers are characterized by the lack of automated data processing, as well as by 

an abstract presentation of the monitoring method without elaborating further use of the 

data, for example, within the framework of a large-scale geoinformation monitoring 

database. 

In this paper, we will consider the remote method of three-dimensional laser scanning 

with the elaboration of the conceptual foundations of creating a monitoring system for a 

database of urban electric grid infrastructure. 

The main terms used in the paper: 

1. Power line deformations - deviations of structural elements such as supports, racks, 

wires, insulators from regulatory and technical standards; 

2. Monitoring of infrastructure facilities - a system for monitoring the state of structural 

elements for their compliance with regulatory and technical parameters; 

3. Point cloud - a set of points of scanned objects located in the radius of the survey; 

4. Power line - a system of energy equipment designed to transmit electricity through 

electric current; 
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5. The height of the line suspension - the distance from the ground to the place of 

attachment of the wire on the insulator of the support; 

6. Sag - the distance in the vertical plane from the lowest point of the wire in the span to 

a straight line between the points of attachment of the wire to the supports; 

7. The size of the wire above the ground is the distance from the wires to the surface of 

the earth with the largest sag; 

8. Digital monitoring platform - a hybrid information resource that allows 

algorithmizing the relationship of a significant number of users of monitoring information. 

2 Methods 

A measurement method was chosen for the study. The measuring tool is the Leica 

Scanstation C10 ground-based laser scanner, which was verified before the survey and 

meets all accuracy requirements (Fig. 1). The device has a two-axis compensator, a full 

field of view (horizontal 360, vertical 270), a built-in video camera and a laser plummet 

[14]. 

 

Fig. 1. Leica ScanStation C10 scanner, Source: https://geosystems.ru  

The measurement technology is three-dimensional laser scanning, which consists in 

high-speed measurement of distances, as well as horizontal and vertical angles from the 

scanner to points of terrain [15,16]. The results of scanning are recorded in the memory of 

the device in the form of a point cloud - a set of measured points with known three-

dimensional coordinates (XYZ), which allows getting a detailed digital spatial double of 

objects located in the radius of the survey. For this instrument, this value is 300 m. The 

distance for the Leica Scanstation C10 is measured with an accuracy of 4 mm at 50 m, the 

vertical and horizontal angle is 12´´/12´´, and a single location is 6 mm [17]. 

To obtain a more detailed measurement result, the discreteness value was set to 5*5 cm 

per 100 m, in 1 second the device recorded 50,000 points. Other set shooting parameters 

were: shooting mode - everything, exposure - automatic, shutter speed 64s, recording - 

uncompressed, resolution - 1920*1920. 

The measurement technology included a field and laboratory stages. The field scanning 

stage consisted of the following: 

1. Reconnaissance survey of the area. As a result of the study of the survey area, 12 

points of scanner location (stations) and 6 points of location of the marks were selected. 

The main criterion for the selection of such points was the mutual visibility and overlap of 

the point clouds of each station, for subsequent stitching at the laboratory stage; 
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2. Installing the scanner at the designed point, centering the device; 

3. Arrangement of marks on a tripod and their centering, determination of coordinates 

and heights; 

4. Ground laser scanning. The operating time at one station was 20 minutes; 

5. Moving the instrument to the next scan point and repeating steps 2-5. 

The laboratory stage was the processing of measurements and consisted of importing 

point clouds, photos from each station into the Leica Cyclone 9.4 program, registering the 

project, and stitching the scans of each station by marks. As a result, a general three-

dimensional model of the survey site was obtained (Fig. 2,3). 

 

Fig. 2. Fragment of the point cloud of the survey site 

 

Fig. 3. Fragment of the point cloud of the studied OHPL 

Based on this image, strain measurements were taken, the functions and capabilities of 

existing software were examined, and the possibility of using laser scanning data to 

diagnose other damage was analyzed. 

3 Results 

An analysis of the literature in the field of overhead line deformations made it possible to 
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identify types of monitoring work and classify them with respect to the main structural 

elements of the power grid facility (Fig. 4). 

 

Fig. 4. Scheme of types of work for monitoring the state of overhead power lines  

The most thorough inspection, as a rule, is made for the supports and wires. This is due 

to the fact that the cause of emergency power line shutdowns in the Russian Federation was 

damage to wires and lightning protection cables (56%), as well as damage to supports 

(15%) [4]. A review of the literature showed that the greatest attention is paid to the 

development of methods for determining the deviation of supports from the vertical and the 

calculation of sagging wires. For this, data can be collected by contact or remotely. 

The contact method involves the installation of various sensors, for example, capacitive 

ones (control of the presence and thickness of the ice wall) installed directly on the contact 

network [10], weight sensors (ice load value), mounted on a power line support [13], 

inclinometers of the Leica Nivel 210, Nivel220 type [11]. The latter are high-precision 

sensors mounted on the supports of high-rise structures for the simultaneous measurement 

of the slope, its direction and temperature in real time. 

The main disadvantage of the method is the additional costs of metrological calibration 

of sensors, their installation, which is associated with a risk to the life and health of the 

performer. 

The remote methods under consideration can be conditionally divided into three 

methods according to the instrument used - using a total station, video camera, and laser 

scanner. 

The use of electronic total stations for monitoring structures is widespread. Moreover, 

the technological range of these devices meets modern requirements. Thus, the use of a 

robotic total station of Leica TM50 I 0.5", Leica TM50 I 1" type allows automated 

monitoring by automatically pointing the aiming line of the total station to the selected 

prism by equipping the visual system with an integrated camera. TargetCapture technology 

allows the total station to automatically follow the reflector if there are obstacles on the 

aiming line. A significant disadvantage of this technology is its high cost. 

Wires 
Supports and stands 

Track 

definition: 
- presence of breaks and 
fusion of individual wires; 
- presence of a surge; 
- sag value; 
- span lengths; 
- height of the 
suspension; 
- wire dimension 

definition: 
- deflection and deformation of 
external elements; 
- deviations of the support from 
a vertical position (tilt), 
- support tension; 
- grounding integrity check; 
- corrosion of metal-to-metal 

connections 

check: 
- presence / absence of 
foreign objects and 
random structures under 
the wires; 
- fire condition of the 
track; 
- distortions of elements 

Insulators, switching equipment, cable 
sleeves on the leads, arresters 

Main elements of control 

Types of monitoring works 
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The second method is sufficiently described in the writings of Shilin A.A., Dementiev 

S.S. and consists in installing a video camera that fixes the position of the top of the support 

and the height of the wire with optical marks mounted on it [1]. A significant disadvantage 

of this method is the analytical calculation of marks’ tags. 

Laser scanning allows determining the height (Z-coordinate) without additional 

calculations by a point cloud. In addition, scanning has a number of other advantages [17, 

18]: 

- linking the collected data to the coordinates of global positioning, which will quickly 

and efficiently determine the exact location of a structural defect; 

- carrying out a survey at a temperature from 0 °C to 40 °C; 

- full performance in absolute darkness and in bright sunlight; 

- obtaining a three-dimensional image of deformations. 

To conduct a monitoring study, an object was selected in the city of Krasnodar of the 

Russian Federation - an overhead power line with a voltage of 0.4 kV, for which its 

dimensions were determined using laser scanning data. 

According to the results of three-dimensional scanning, the span was determined - 

27.097 m, sag - 0.847 m, suspension height - 6.040 m, and wire dimension - 5.193 m (Fig. 

5). 

 

Fig. 5. Determination of the OHPL dimensions according to the results of three-dimensional scanning 

In addition to the OHPL dimensions, the deviation of the support from the vertical was 

determined, which in the considered example was 0.475 degrees (Fig. 6). 

 

Fig. 6. Determination of deviation of the support from the vertical 

Span length 

Wire dimension 

Suspension 

height 

6

E3S Web of Conferences 157, 06007 (2020)  https://doi.org/10.1051/e3sconf/202015706007
KTTI-2019



The performed studies show that the data of laser scanning allow monitoring of electric 

network facilities with obtaining numerical indicators of deformations. However, without 

systematization and monitoring in a single resource, the method will be ineffective. 

Therefore, it is proposed to conduct cyclic monitoring with the introduction of the results of 

three-dimensional measurements in the developed unified digital monitoring urban 

platform. Strain detection in it can be performed in several ways that define various 

concepts of a digital platform: 

1) according to strain calculation algorithms; 

2) compared to real shooting with an ideal model. 

In the first case, the following sequence of actions is assumed: import of a stitched and 

equalized point cloud; the selection of the OHPL structural elements by pressing the 

appropriate platform command (filtering the scan data will allow detecting strains for each 

structural part of the object indicated in Figure 3 and the type of strain associated with it); 

launch of algorithms for the detection and calculation of strain parameters; the issuance and 

analysis of the result by the operator with the subsequent sending of the team of performers 

to damaged objects, the coordinates of which are determined in a digital platform. 

To implement this concept, it is necessary to develop a classifier of the OHPL structural 

elements, automate the process of their selection on the basis of machine vision, formalize 

the search and calculation of deformations, and also upload data on defects and their signs 

to the database of the proposed digital system. 

The implementation of the second concept of the digital platform is to build the ideal 

model of electric grid facilities and compare it with real data. Such a model will be built on 

the basis of the location of the OHPL supports and the data of normative and technical 

documentation. 

The algorithm of actions for monitoring deformations in this system is as follows: 

import of a stitched and equalized point cloud; launching the ideal model; running a 

command for comparing the ideal and real models and highlighting the differences - 

deformations; calculation of the parameters of certain deformations indicated in Figure 2; 

delivery and analysis of the result by the operator with the subsequent sending of the team 

of performers to damaged objects, the coordinates of which are defined in the platform. 

4 Discussion 

The introduction of laser scanning technology in the monitoring system of infrastructure 

facilities, first of all, will allow: 

- carrying out operational collection of objective data on the state of structural elements 

of power lines and overhead power lines; 

- optimizing the process of determining and assessing the main deformations such as tilt 

of supports, unacceptable sag of wires at the stage of their occurrence. 

The timely establishment of deformations will prevent serious accidents, thereby 

increasing the safety of the operation of engineering infrastructure for the population. 

The introduction of a digital monitoring platform with a cyclical update of the scan 

results will create monitoring conditions in a single analytical and information resource, 

which will allow analyzing and predicting possible deformations or accidents before they 

occur on the basis of the results of numerous measurements [19]. 

5 Conclusions 

Further research will be devoted to the automation of three-dimensional data processing, 

namely, the search and calculation of strain parameters using machine vision [16]. The 
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research vector will be associated with the development of methods of filtering, image 

segmentation, pattern recognition, as well as the use of artificial intelligence technology in 

digital surveys. 

In addition, it is planned to further develop and modernize a digital information 

monitoring platform for other social and engineering infrastructure objects, such as multi-

story buildings, schools, kindergartens, roads, bridges, and others. The development of the 

information resource is supposed to be carried out on the basis of distributed registry 

systems, since monitoring data can be used by various city services [20-22]. 

 
The reported study was funded by Russian Foundation for Basic Research and Administration of 

Krasnodar Region of the Russian Federation according to the research project № 19-48-233020 Study 

of the possibility of using the complex of three-dimensional laser scanning for monitoring and 

ensuring the safety of infrastructure facilities in the city of Krasnodar and the Krasnodar Territory 

 

IKNIR AAAA-A18-118121290132-9 “Theory and methods of studying laser scanning data for the 

management of digital infrastructure” 
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