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Abstract. Estimating the reduction factor for calculating massive 
reinforced concrete bridge piers was made. For this purpose a quasi-static 

"force-displacement" diagram was built up using the ANSYS software. 
This diagram has the form of a bilinear one, and the character of the 
bilinearity depends on the diameter of the reinforcing bars insignificantly. 
The percentage of reinforcement affects only the moment when all 
reinforcement bars begin to flow. The reinforcement flow takes place in 
the displacement interval from 3 to 5 cm. The collapse will occur when the 
reaction of the bearing part goes beyond the pier cross-section at pier 
displacements from 5 to 20 cm. Using "force-displacement" diagram, the 

behavior of the single-mass model with a bilinear deformation diagram and 
the limit displacement of 20 cm was analyzed. Then, it became possible to 
obtain for each accelerogram the limit elastic displacement and the limit 
position of the point corresponding to the maximum structure displacement 
during structure oscillations. It was done using real accelerograms of 
earthquakes with intensity 9 on the MSK scale without normalizing their 
amplitudes. In this case, long-period accelerograms had smaller peak 
accelerations, but resulted in greater plastic deformations. As a result, no 

evident dependence of plastic deformation on the input spectral 
composition was found and the value of reduction factor K1 turned out to 
be 0.25-0.27. However, it is shown that this reduction factor cannot be 
used to make transition from seismic loads obtained on the basis of time-
history analysis by accelerograms to design loads. 

1 Introduction  

Currently, the transition to multi-level designing of seismic structures is taking place in 

earthquake engineering. In this connection, the notion of the reduction factor is used to 

relate the results of elastic calculations with those of inelastic ones. This factor is 

designated as K1 in the Russian Federation Guidelines in use (according to Russian State 
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Standard “SP 14.13330.2018 Construction in seismic areas. The updated edition of 

Guidelines II-7-81*”). A great number of works in Russia [1, 2] (Oizerman V.I., 

Calculation of structures for seismic actions by the method of limiting states, Abstract 

information / TsINIS. Ser. XIV. Seismic resistant construction, Vol. 9 (1978) 4-7; Rutman 

Yu. L., Simbort E., The choice of the reduction factor of seismic loads on the basis of 

analysis of the plastic design resource, Herald of Civil Engineers (2)27 (2011) 78-81) and 

other countries [3-8] are devoted to the evaluation of the reduction factor. However the 

main features of estimating this factor are often treated differently, especially in Russian 

publications. In a lot of studies the coefficient K1 is regarded as the ratio of elastic 

displacements to the maximum calculated displacements of the elastoplastic system in time-

history calculating using earthquake accelerograms. In this case, the value of K1 depends 
essentially on the input type. It was established in [5] that for fixed peak ground 

accelerations (PGA), the values of K1 decrease greatly with the increase of the prevailing 

input period. However, to use the fixed normative value of PGA as a basis seems 

completely wrong. The values of PGA depend significantly on the prevailing period of 

excitation, which is discussed in detail in literature [9-11]. 

The lack of an unambiguous understanding of the meaning of the reduction factor and 

methods of it estimating required that the authors should explain their approach to 

evaluating the reduction factor.  

Figure 1 shows a typical diagram of the system monotonic loading. The curve presented 

on the diagram is called a “push-over curve”. 4 points are located on the displacement axis 

u: 

• uel is the displacement elastic limit; 
• ured is the redundancy point, i.e. the limit of exhaustion of the reserve capacity of the 

system due to its static indeterminacy, in other words the point of the system transformation 

into a mechanism; 

• ucalc is the calculated displacement of the nonlinear system at a given input; 

• uult is the maximum system displacement, after which the system will completely 

collapse. 

On the seismic response axis, the indicated displacements correspond to the following 

points 

• Sel is the load elastic limit; 

• Slim is the redundancy point; 

• Scond is the conditional response of the linear system; 
• Sult is the limiting conditional response of the linear system, after which the system 

collapses. 

In addition to the points indicated on the S-axis, the linear system response 
( )el
calcS  to the 

input causing the displacement ucalc in the nonlinear system is shown. 

There are two other additional points SGL and Sdes on the S-axis. SGL is the limit load in 

accordance with the Guidelines in law and Sdes is a design load which is compared with the 

load elastic limit in order to estimate the structure seismic stability. 
Note that the Scond and Sult values are conditional and are the projection of the 

corresponding displacements on the elastic response line. 
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Fig.1. Characteristic points on the diagram of a structure monotonic loading 

In the most studies, the following inequality is considered as a condition of seismic 
stability 

Sdes <Slim.                      (1) 

In this case, the reduction factor K1 reduces the load calculated for the elastic system to the 

design load Sdes 

( )
1 .

el
descalcS K S                      (2) 

To estimate the factor K1, three auxiliary factors are used 

                                                            K1 = RRredRover,                                     (3) 

where R is the response modification factor, which reduces the load 
( )el
calcS  to the limit 

load Slim; 

Rred is the factor of static uncertainty that reduces the load Slim to the elastic limit Sel; 

Rover is the overload factor that reduces the elastic limit Sel to the design load Sdes. 

These factors are explained in Fig.1 

In addition to the three mentioned coefficients R, Rred and Rover, coefficient R, is used 

in a number of works, in order to take into account the fact that the calculation is performed 

with a conditional damping different from the actual one. 

Unlike the above mentioned approach, we proceed from the fact that calculating a 

structure under the MDE is kinematic, since in the ultimate state the strength requirements 
are violated and the system turns into a mechanism. Then the seismic stability requirement 

is written in the following form 
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                                                        ucalc <uult.                          (4) 

Let us introduce the concept of the limit plasticity factor into the analysis  

.ult ult
ult

el el

u S

u S
                                (5) 

Note that the conventional plasticity factor is defined as 

                                                    .calc cond

el el

u S

u S
                       (6) 

The value of  tends to ult, if the calculated value of the displacement tends to the limit 

value. 

Taking into account (5) inequality (4) can be written in the following form 

                                                    .calc el ultu u                          (7) 

This inequality can be presented using the above described loads 

                                                   .cond el ultS S                              (8) 

The Guidelines provide for one the overload of structural elements. If we denote the 

permissible load by SGL, the following expression is obtained 

                                                   ,el GLS S               (9) 

where the coefficient  <1. 

As a result, condition (7) takes the following form 

                                             .cond GL ultS S               (10) 

An other problem is to present the value of Scond by the value of 
( )el
calcS . To do this, it is 

necessary to use the reaction modification factor 

                                                   
( )

( )
.

el el
el

calc

S
R

S
           (11) 

The factor 
( )el

R


reducing the design response to the elastic response is used in this 

formula. 

4

E3S Web of Conferences 157, 06012 (2020)  https://doi.org/10.1051/e3sconf/202015706012
KTTI-2019



Note that in the accepted notation 
( ) 1el

R
 

 , as the value of R refers to forces and 

the value of  to displacements. 

It should also be noted that the factor R entering formula (3) coincides with the 

coefficient 
( )el

R


 only in the absence of redundancy section, i.e. at Sel = Slim or, in other 

words, in the case, when the law of deformation is described by the Prandtl diagram. 

The well known energy estimate of the value of R obtained by N.Newmark [12] who 

used the Prandtl diagram as the deformation one, has the following view: 

                                               
1

.
2 1

R



 

                              (12) 

In general, the value of R must depend on the type of input and the diagram of the 

system loading. 

Now, one can write 

                                                
( )

.
el cond

calc

S
S

R



          (13) 

From here 

    
( )

.
el

cond calcS S R                     (14) 

After substituting (14) into (11), we obtain 

( )
,

el
GL ultcalcS R S               (15) 

or 

                                               
( )

.
el

GLcalc
ult

R
S S



 





                   

(16) 

Here the multiplier 

ult

R

 




 is the reduction factor K1. 

Using the approach developed in the world literature, one can transform formula (2) 

with allowance for (3) in the following form 
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( )

.
el

red over elcalcS R R R S             (17) 

If the normative value SGL is taken in place of (17), then conditions (16) and (17) are 

satisfied under the condition 

                                         

( )

,

el

red over
ult

R
R R R








 
            (18) 

if we take into account that 
( )el

redR R R   , we get over
ult

R



 . 

Below, the reduction factor is analyzed from the positions of formula (16), i.e. 

                                                         1 ,
ult

R
K



 





          (19) 

with respect to the assessment of pier seismic resistance typical of transport construction in 

Russia. 

2 Materials and methods 

The authors consider a detailed finite element model of the bridge pier body widely used in 
Russia in transport construction practice. The diagram and the finite-element model of the 

pier are shown in Figs. 2 and 3, respectively. 

Finite element modeling was carried out using the ABAQUS-soft complex [13]. To 

simulate concrete, three-dimensional linear isoparametric finite elements C3D8R were 

used; to simulate the reinforcement, beam elements with cubic interpolation B33 were used. 

The interaction was modeled with the help of the “embedded region” due to the automatic 

setting of kinematic relationship on the translational degrees of freedom between the nodes 

of the “host elements” (concrete) and the nodes of the “embedded 
elements”(reinforcement). The boundary conditions were the prohibition of all 

displacements in the pier bed. The loads were applied to the pier in two steps: first, the 

vertical operating (pressure on the upper faces), then, lateral movement at the top point of 

the pier. 

To describe the nonlinearity of the pier behavior, steel reinforcement was simulated 

using the flow theory with linear isotropic hardening, and concrete was simulated using an 

elastoplastic model with damage [5] (Rutman Yu. L., Simbort E., The choice of the 

reduction factor of seismic loads on the basis of analysis of the plastic design resource, 
Herald of Civil Engineers (2)27 (2011) 78-81). The determining equations, methods for 

determining constants and calibration of the model are described in detail in [3, 4, 6, 7]. 

Deformation diagrams for reinforcement of class A400 with the design resistance 400 MPa 

and concrete of classes В30 with the limit prism strength 22MPa (contour blocks) and В10 

with the prism strength 7.5MPa (monolithic core and seams) used in the calculations are 

shown in Fig. 3. 

An attempt at estimating the reduction factor for calculating massive reinforced 

concrete bridge piers was made earlier by the authors (L.N. Smirnova, A.V. Benin, S.G. 
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Semenov, Yu. Guan, Estimation of the reduction coefficient for the calculation of bridge 

supports, Seismic resistant construction. Safety of structures 6 (2016) 15-19), using the 

software ANSYS. In this paper a quasi-static "force-displacement" diagram was built up to 

the point when all the concrete reinforcement "flowed" in the pier body, i.e. the pier 

became a mechanism. This diagram is presented in Fig.4 for different percentages of the 

pier reinforcement, and the moment of exhaustion of the bearing capacity of the pier is 

marked by a red dot. In the paper under consideration the coefficient K1 obtained as the 

ratio of the elastic displacement to the limit value. 

Fig.2. The pier diagram 

The dependence obtained allows us to estimate only the Rred factor, which enters into 

formula (3) to determine the value of K1. The corresponding calculations are given in Table 

1. In fact, the pier can keep moving after the moment when the reinforced bars begin to 
flow without any collapse. The collapse occurs when the reaction of bearings R extends 
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beyond the cross-section of the pier (Fig. 5). This makes it possible to increase the limit 

movement of the pier up to 20 ÷ 30 cm. 

 

 

Fig.3. The finite element model of the pier a) the complete model; b) the monolithic core; c) the 
seams; d) the contour blocks; e) the reinforcement 

 

Fig.4. Deformation diagrams of concrete (a) and steel (b) 
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If we follow the principles of multilevel designing using maximum design earthquakes, 

which consider structure calculation as kinematic one, then in the GL formulas for 

calculating piers it is necessary to use K1 =
(lim)
1K . Such decision is justified by the 

experience of massive bridge pier damages, at which piers remained operational even when 

the solidity of the pier body was broken (A.A. Nikitin, A.Ju. Simkin, A.M. Uzdin, 

Engineering Analysis of Spitak Earthquake Effects and Problems for Strengthening 

Buildings, Proc. of the 9th European Conference on Earthquake Engineering, Vol. 9 (1990) 

118-128). For lightweight reinforced concrete piers with a large percentage of 

reinforcement, such a decision would be erroneous.  

Taking into account the above mentioned, we can estimate the value 
(lim)
1K under the 

assumption that for the most dangerous accelerograms ucalcuult = 200 mm. If we assume an 
overload factor of 1.1, i.e.      Rover = 0.909, then formula (3) gives an estimate of K1 shown 

in the penultimate row of table 1. 

Table 1.The results of the analysis of the monotonically loaded support diagram 

 

reinforcement 

percentage 
 

d=16 [mm] d=24 [mm] d=40 [mm] 

characteristics    

uel, [mm] 10 10 10 

Sel, [МN] 1.75 1.75 1.75 

ured, [mm] 60 70 88 

Slim, [МN] 3.15 3.4 3.7 

Rred=Sel/Slim 0.555 0.515 0.473 

SGL, [MN] 2.25 2.32 2.40 

=Sel/SGL 0.778 0.754 0.729 

uult, [mm] 200 200 200 

ult=uult/uel 13.3 13.3 13.3 

ult,red=uult/ured 3.33 2.86 2.27 

R,ult=1/2ult-1 0.198 0.198 0.198 

R,ult,red=1/2ult,red-1 0.42 0.46 0.531 

R,ult,red· Rred 0.233 0.237 0.251 

K1
(lim) = 

R,ultRredRover 

according to the 

formula (3) 

0.212 0.216 0.229 

K1
(lim) = R,ult/ 

according to the 

formula (19) 

0.254 0.263 0.272 
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Fig.5. The displacement-force diagrams for the bridge pier and various diameters d of the 
reinforcement bars. The color dotted lines show the limit forces according to the GL; the dotted bold 
line shows the load bilinear approximation of the pier displacement-force diagram 

 

Fig.6. Scheme for estimating the ultimate pier displacement 

3 Estimating the reduction factor on the basis of dynamic time-
history calculations 

Keeping the above mentioned in mind, one can use the push-over method [14] to estimate 

the reduction factor and consider the behavior of a single-mass model with a bilinear 

deformation diagram and with the limit displacement of 20 cm. The deformation diagram 
of such model is shown in Fig. 1 by a dotted bold line. 

In [5], the author used a package of accelerograms (according to Russian State Standard 

“SP 14.13330.2018 Construction in seismic areas. The updated edition of Guidelines II-7-

81*”), assuming the peak accelerations to be fixed. In our opinion, this approach is 
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erroneous. If seismic inputs should be normalized, then, in order to characterize the strength 

of the earthquake, it is necessary to use energy characteristics, which are substantiated in 

[10, 15, 16]. 

The authors of this paper used records of past earthquakes with intensity of about 9 on 

the MSK scale with their actual accelerations. The records were taken from the database of 

the accelerograms described in [11]. Peak accelerations of the considered impacts vary 

from 2 m/s2 (Bucharest, Mexico) to 10 m/s2 (Tabas, Iran), and the prevailing periods range 

from 0.1 s to 1.5 s. In the dynamic calculations made by the authors, the considered pier 

was analyzed with different span structures. The dimensions of such piers are determined 

by those of the span structures. Therefore, the load can be transferred to the pier from metal 

single-span flying structures with a weight of up to 100 tons and from continuous 
reinforced concrete spans weighing more than 12,000 tons. In this case, the oscillation 

period of the pier with a span structure varies from 0.07 s to 0.4 s. The ultimate elastic force 

is considered in fractions of the weight of the span structure and ranges from 0.1 to 0.4 s. 

The pier loading diagram is shown in Fig.6. There are three sections in it. 

In section 0-1, the pier behavior is elastic until displacements u < Uel. In section 1-2, the 

reinforcement gets plastically deformed, and displacements increase up to u=U, after 

which the pier turns into a mechanism. In section 2-3, the pier body rotates around its side 

and at point 3 with u = Ulim the pier falls down. The earthquake causes the maximum 

displacement of the pier Ueq marked in the diagram section of 2-3 by point 4. Where in 

     
( )
1

1
.

eq el

eq

U
K

U
       (20) 

to explain the calculation results, we note two circumstances. 

First, the value of Uel and its corresponding coefficient 
( )
1

eq
K depend on the 

prevailing input period. However, this dependence should not be monotonous, as was 

obtained in [5], but should have its peak at a frequency resonant for the structure. If a 

structure is rigid, i.e. when light spans are placed on the pier and the system's own 

oscillation frequency is 0.05 ... 0.08 s, even strong earthquakes can leave the pier intact. 

 

Fig.7. Schematic diagram of pier deformation 
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Second, among resonance excitations, the most dangerous input should be considered 

the one with the higher value of the energy characteristics namely the Arias intensity IA, the 

absolute cumulative velocity CAV and the seismic energy density SED. 

To estimate the value of 
( )
1

eq
K , the authors considered the following equation 

                                   0( , ) ,mq kmq Q q q my            (21) 

where m is the mass of the span structure, q is the displacement of the top of the pier 

relative to the base, k is the eigen frequency of the elastic oscillations of the pier with the 

span structure, = 0.1 is the inelastic resistance coefficient of the pier material, which is 

equal to the double value of critical damping, ( , )Q q q  is the pier response in 

corresponding to the dependence shown in Fig.5, 0y  is the design accelerogram of the 

base. Integration of equation (21) was carried out taking into account the piecewise 

linearity of the system and using an explicit presentation of the solution at each integration 

step. 

4 Results and discussion 

The calculation results are shown in Fig. 8 for a 12,000-ton fly-over, with the eigen period 

equal to 0.46 s for the undamaged pier with a span. Fig. 8 shows the dependence of the 

plasticity factor  on the predominant earthquake period of the accelerogram. Each 

accelerogram in the picture corresponds to a single point. All in all 88 calculations were 

carried out using the accelerogram database [5] available to Russian and Chinese co-

authors of the paper. In addition to the points in the diagram, an approximating relationship 

 ( )
1

eq
eqK T  is shown. 

As can be seen from the figure, there is no explicit dependence of the coefficient  on 

the prevailing input period found in [5]. This is due to the fact that in [5] the accelerograms 

are normalized to PGA = 4 m/sec2. In this case an increase of the plasticity coefficient (a 

decrease of the reduction coefficient) was observed in [5] for long-period actions. In our 

studies the PGA is assumed to be actual and it decreases with an increase in the prevailing 

period, leading to a decrease of the plasticity coefficient. As a result, the average value of 

the plasticity coefficient is 4, and R = 1/ = 0.25. 

In general, the value of  for a concrete impact is significantly affected by the proximity 

of the prevailing input period to the eigen structure period. In the case under consideration 

some strong actions did not cause plastic deformation of the pier at all, although for 

structures with other periods these actions are very dangerous. There were 12 such actions 

among 91 used, which turned out dangerous for different structures but not dangerous for 

pier under consideration. 

For illustrating this feature we used the spectrum of plastic deformation work. It is the 

dependence of the work of plastic deformation force of the elastoplastic system on its initial 
period. Fig. 9 shows the spectrum of the work of the plastic deformation forces for one of 

such action (Nortridge earthquake), while the dotted line shows the eigen period of the pier 

oscillations. The pier eigen frequency is not found in the spectrum frequency band, i.e. the 

action is not resonant, while resonant actions cause large plastic deformation of the pier and 

the corresponding value of the coefficient . The spectrum of the work of plastic 

deformation forces for the resonant action (Kobe earthquake) is shown in Fig. 10 
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Fig.8. Dependence of the plastic factor on the prevailing input period 1 - average value; 2 - Apl + 
Apl 

 

Fig.9. The spectrum of the work of the plastic deformation forces for the Nortridge earthquake  

1 - =0.1; 2 - =0.15; 3 - =0.2 
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Fig.10. The spectrum of the work of plastic deformation forces for the Kobe earthquake 

1 - =0.1; 2 - =0.15; 3 - =0.2 

Among the actions considered, only 4 turned out to be resonant. However, they caused a 

weak maximum on the curve (Teq) in the zone of the natural vibration frequency of the 

pier, which is shown on the fragment of the (Teq) dependence (Fig.11). 

 

Fig.11. Fragment of dependency (Teq) 

Using a packet of calculated accelerograms without a special selection of resonant 
effects gives a stable average value of the plasticity factor. However, the presence of 

resonance effects in the packet leads to a large variance in the value of . For the case 

considered, Fig. 7 shows two dependences - (Teq) and the same value plus its mean-square 

deviation, i.е.  + . It follows that with limited seismological information, as well as 

with arbitrary inform, action for typical designing, it is necessary to select a packet of 
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design accelerograms taking into account the dynamic characteristics of the structure, i.e. to 

choose resonance actions. 

plasticity factor depends essentially on the action spectral composition. In our case it 

varies from 1 to 20. This does not allow one to recommend one and the same coefficient for 

the transition from plastic displacements to the calculated elastic ones. Among many 

actions only a small amount can be considered dangerous for the structure. In other words, 

it is impossible to pass from the result of elastic calculation to design displacements and 

forces using the single plasticity factor . 

The same result was obtained for the ratio 
( )

cond
el

calc

S

S
, which is often used for connection 

elastic and inelastic calculations. This dependence on the predominant accelerogram period 

is shown in figure 12 with the maximum of this dependence being clearly seen. 

 

Fig.12. Dependency 
( )

cond
el

calc

S

S
(Teq) 1 - average value; 2 - 

( )
cond

el
calc

S

S
 +

( )
cond

el
calc

S

S
 

If we take a certain accelerogram and consider piers with different span structures, we 

get similar results: the input causes the greatest plastic deformations in structures with the 
danger oscillation period. This period is somewhat longer than the eigen period of the pier 

without plastic deformation. In other words, the elastic response spectrum has its peak at 

higher frequencies than the spectrum of the work of plastic deformation forces.  

5 Conclusions 

The research carried out by the authors allows them to state the following 

1. Different approaches to estimating the reduction factor can be proposed. As a rule, its 

estimation is based on reducing the seismic load in the elastic system to a certain 

design level in accordance with the formula (3). The authors consider the factor  more 

physical to regard it as the coefficient of reduction of the limiting inelastic 
displacements to elastic one in accordance with the formula (18). In this case, the main 
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normative formula, although reduced to a force form, is kinematic, i.e. it restricts the 

system displacement. 

2. To establish the connection between time-history elastoplastic calculation using 

earthquake accelerograms and calculation using the RSM, it is necessary to make 

preliminary calculations of a simplified system model using the design accelerogram. 

When carrying out such calculations, it is necessary to use an accelerogram that is 

dangerous for the structure. It is impossible to make the transition from seismic loads 

obtained on the basis of time-history analysis by accelerograms to design loads using 
one and the same plasticity factor. This coefficient depends significantly on the 

spectral composition of the action. 

3. From the point of view of structure seismic resistance, it is not the concrete plasticity 

factor at this or that input that is of interest, but the limiting coefficient of plasticity, the 

excess of which value leads to the structure destruction  

4. Table 1 gives a summary of the coefficients K1 for the considered pier. To calculate 

bearings of this type using the GL, the authors recommend to use the value K1 = 

(lim)
1 0.25 0.27K  

. This means that the admissible limiting displacements of the 

pier top are about 4 times greater than its limiting elastic displacements. 

 
The authors are grateful to S. R. Grebenshchikova for her help in preparing the English version of the 
paper. The work was carried out with the support of the grant of the Russian Foundation for Basic 
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