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Abstract. This work contains the results of a research of the dynamic 

processes in the "bridge-train" system while passenger trains move over a 

bridge structure (overpass) in high-speed. The article presents the 

methodology of mathematic modelling, and the basic differential equations 

of the studied system elements motion are provided. Also there is a 

description of dynamic interaction of the bridge-train system numerical 

model based on the FEM. In general, taking into account in the design 

scheme of the “bridge” system not only spans, but also piers with a 

foundation, it is possible to more accurately determine the values of the 

bridge natural frequencies, which is a key factor in assessing the dynamic 

response of a structure when passing a high-speed train. 

1 Introduction  

According to research [1-5], in conditions of high-speed train traffic, the inertial forces in 

the bridge structure and the railway track elements, that occur under the impact of the 

rolling stock load which usually consists of the same type of cars, increase. These effects 

are particularly important for bridge structures of the trestle type with a large number of the 

same length girder spans and high height supports. 

Thus, the study of dynamic processes in train cars, span structures and piers of bridges 

becomes relevant. Obviously, that the estimated model of the system "bridge-train" should 

include: high-speed train model (including two-stage spring suspension), track structure 

model (including elastic and inertial characteristics), superstructure and the nature of its 

support (including support friction in moving parts), supports and foundations (including 

the ductility of the base). 

A significant role on high-speed railway bridges is also played by "irregularities" of 

track, which might be periodic, due to the value of the construction lift and span structures 

elastic deflections, deformed under the live load, or accidental, characterized by defects in 

the rails and wheels of the train. 

Track irregularities become a source of oscillations "bridge-train" system along with the 

main effect in the form of periodic passage of bogies, or wheelsets, rolling stock along 

spans. As is known [6-7], the bridge dynamic response magnitude under the influence of a 

high-speed train is determined primarily by the parameters of the system itself (car lengths, 
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axial loads, bridge static structure, span lengths, structural material, stiffness and 

massiveness of beams and supports, etc.). The dynamic response of train cars is also 

determined by the rolling stock parameters (sprung and unsprung masses, stiffness and 

damping in suspension, etc.) and the bridge (length of beams and their number, 

construction scheme, track parameters on the bridge, etc.). 

2 Problem statement 

When deriving a system of differential equations describing the movement of "bridge-train" 

system elements during their interaction, one should take into account the high complexity, 

as a result of which it seems appropriate to maximize the idealization of the calculation 

model, providing for a number of assumptions: 

 the bridge is accepted as a regular system (equal spans); 

 the abutments of the bridge are absolutely rigid; 

 oscillations of the bridge and train elements are investigated in a 2D statement; 

 the train is modeled as a sequential chain of the same type of biaxial cars. 

After these simplifications, the design scheme of the "bridge-train" dynamic interaction 

system will have the form shown in Fig. 1. 

 

 

Fig. 1. Model for «bridge-train» dynamic interaction analysis 

The assumptions made allow us to write down the differential equations of oscillations 

of the “bridge-train” system elements of in the following form: 
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Here 1z - the absolute movement of the body of the i-th car at point 1 (the first in the 

direction of travel), determined by the stiffness of the springs and track irregularities; 

2z
 - the same at point 2; 

jq
 - movement of the bridge point j in the direction of the generalized coordinate; 

,k l
 - unit displacement of bridge point k from the force applied at point l; 

эМ
 - sprung mass of the car; 

iМ
 - i-th discrete mass of the bridge; 

iF
 - friction force in movable bearings mounted on the i-th support from permanent and 

live loads; 


 - damping coefficient of the bridge element; 

g
 - acceleration of gravity force; 


 - the coefficient of transition from vertical displacements of the middle of the span 

to longitudinal displacements of the same point in the level of the hinge of the supporting 

part. 

Trains car oscillations are largely determined by the deformation of the springs and the 

track irregularities. You can write: 

1 1 1 1

эz y           (8) 

2 2 2 2

эz y           (9) 

, where 1 2, 
- spring deformations, respectively, under point 1 and 2 of the i-th car; 

1 2,э эy y
 - deflection of the bridge beam at points 1 and 2, respectively, of the i-th car; 

1 2,   - ordinates of “irregularities” of the way at points 1 and 2 of the i-th car. 

At the same time, inertia forces 1 2,Х Х arise at points 1 and 2 of the car, determined 

from the equations: 
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Here J - is the moment of inertia of the sprung part of the car relative to the central 

main axis of inertia, determined by the formula: 
2

эJ М r        (14)
 where r - is the radius of inertia of the car; 

Expressions for unknowns 1 2,z z
, you can apply the following: 
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From these expressions, the values 1 2,z z&& &&
 are found to obtain the displacements of the 

bridge points in the directions of the generalized coordinate jq
 and inertia forces 1 2,Х Х

 

of points 1 and 2 of the car. 

You can apply:  
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where  - is the compliance of the spring suspension of the car; 

Deflections of the beam of the span under the first and second axes of the i-th car are 

determined by the expressions: 
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Given that x Vt , where (V - is the speed of the train, and t – is the time), we can 

represent the coefficients of influence in the form: 
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And finally get the dependence of the "bridge-train" system dynamic characteristics on 

the speed of the train. The presented model allows us to evaluate the nature of the "bridge-

train" interaction, however, it is based on rather crude simplifications. For more accurate 
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practical calculations, a numerical model of the "bridge-train" system interaction based on 

the FEM can be used [9]. 

3 Analysis of train-bridge dynamic interaction 

When performing the calculations, the following parameters of the bridge structure and 

rolling stock were adopted: 

 Bridge scheme: 10x34.2 m; 

 Spans: box-section of prestressed concrete (E = 36000 MPa, A = 9.58 m
2
,  

J = 11.68 m
4
). The mass of ballastless track was included in the mass of spans; 

 Intermediate supports: continuous section of ordinary reinforced concrete  

(E = 36000 MPa, A = 11.19 m
2
, J = 23.66 m

4
) with a height of 10 to 25 m; 

 Foundation of piers: bored piles Ø 1.5 m, length 25.0 m [8]; 

 Rolling stock: high-speed train “Sapsan” (Velaro Rus), car length 24.73 m, axle load 

147 ... 165 kN, boogie base 2.6 m, number of cars 10. 

At the first stage of the calculation, a modal analysis of the “bridge-track” system was 

performed. Some general forms and corresponding eigenfrequencies are shown in Fig 2. 

a). b).  

c). d).  

Fig. 2. Natural frequencies of “bridge-track” system. a). 1st – 1.25 Hz; b). 9th – 4.35 Hz; c). 10th – 4.40 

Hz; d).17th– 4.90 Hz 

To evaluation the nature of the “bridge-train” system dynamic vibrations, the calculated 

case of the movement of a high-speed train at a speed of 387.3 km/h was considered, which 

for a span of 34.2 m (the first natural frequency of vertical bending vibrations - 4.35 Hz) is 

a critical (resonant) speed. 

In the course of the calculations, vertical displacements (Fig.3), accelerations (Fig.4) of 

car bodies and the middle of the bridge spans (Fig.5, 6), as well as longitudinal horizontal 

displacements of the piers (Fig.7) were obtained. 
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Fig. 3. Vertical displacements in the front (solid) and back (dashed) point of car bodies while moving 

of a high-speed train "Sapsan" (Velaro RUS) at a resonant speed of 387.3 km/h 

 

Fig. 4. Vertical accelerations in the front (solid) and back (dashed) point of car bodies while moving 

of a high-speed train "Sapsan" (Velaro RUS) at a resonant speed of 387.3 km/h 
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Fig. 5. Vertical displacements in the middle of the bridge spans (1-2, 6-7 and 10-11) while moving of 

a high-speed train "Sapsan" (Velaro RUS) at a resonant speed of 387.3 km/h 

 

Fig. 6. Vertical accelerations in the middle of the bridge spans (1-2, 6-7 and 10-11) while moving of a 

high-speed train "Sapsan" (Velaro RUS) at a resonant speed of 387.3 km/h 

7

E3S Web of Conferences 157, 06015 (2020)  https://doi.org/10.1051/e3sconf/202015706015
KTTI-2019



 

 

Fig. 7. Longitudinal horizontal displacements of the bridge piers (2nd, 7th and 10th) while moving of a 

high-speed train "Sapsan" (Velaro RUS) at a resonant speed of 387.3 km/h. 

4 Discussion 

As a result of the calculations, the values of the bridge spans natural frequencies were 

obtained, which have values of 4.35-4.90 Hz. The difference in the value of the natural 

frequency for different spans is explained by the inclusion in the coupled vibrations of piers 

with different height. For spans on high piers, the natural frequency value is lower. Also, 

this factor determines various values of train speeds at which resonant span vibrations will 

occur. 

It should be noted that the interaction of the bridge piers, spans and jointless track leads 

to a decrease in the amplitudes of vibrations compared to the usual simplified model [6-7] 

by about 30-40%. However, this fact has a negative impact on the dynamic work of the 

system. At close values of the spans and piers eigenfrequencies, vertical resonance 

vibrations are transmitted to the piers and cause intense longitudinal vibrations of the piers, 

which necessitates taking into account dynamic effects in pier designing (especially high) 

bridges on high-speed highways.  

5 Conclusion 

Analysis of the studies performed allows us to conclude that when a high-speed train passes 

through a regular type bridge, all elements of the “bridge-train” system interact actively. 

Under certain conditions, the values of the natural bending natural frequencies of the spans 

and piers can be close, which will lead to the transfer of additional horizontal forces to the 

piers during intense resonant vibrations of the spans. 

In general, taking into account in the design scheme of the “bridge” system not only 

spans, but also piers with a foundation, it is possible to more accurately determine the 

values of the bridge natural frequencies, which is a key factor in assessing the dynamic 

response of a structure when passing a high-speed train. 
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It should also be noted that the introduction of the parameters of the soil foundation into 

the design scheme has a beneficial effect on the operation of the entire system, since part of 

the spans vibrations energy is transmitted through the supports and the foundation to the 

ground and dissipated, increasing the dissipative characteristics of the entire system. 
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