
 

Finite element simulation of a motorway bridge 
collapse using the concrete damage plasticity 
model 

Andrey Benin1, Matija Guzijan-Dilber2, Leonid Diachenko 1*, Artem Semenov3 

1 Emperor Alexander I St. Petersburg State Transport University, Moskovskiy pr., 9, St.Petersburg, 

190031, Russia 
2 Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St.Petersburg, 195251, 

Russia 
3 Technische Universität Dresden (TUD), Dezernat 8, Dresden, 01062, Germany 

Abstract. The aim of this work is to show how the concrete damage 

plasticity model developed by Lubliner et al. can be applied for calculation 

of a motorway bridge collapse occurred in the Amur region, Russia. The 
concrete structural behaviour is highly complex. Being a quasi-brittle 

material, concrete demonstrates softening behaviour that is numerically 

complex due to the loss of positive definiteness of the tangent rigidity matrix 

of the material, and hence the loss of the ellipticity of the equilibrium rate 
equation. This eventually leads to the loss of well-posedness of the rate 

boundary value problem. Besides that, concrete behaviour in compression 

differs from that in tension. There are a few different failure modes of 

concrete material: tension cracking, compression crushing, spalling of 
concrete, etc. 

1 Introduction  

The problem of finite element simulation of concrete structures is related to complexities that 

one faces when describing non-linear material behavior that leads to the development of 

cracks. In order to include those non-linear effects one needs to specify non-linear parameters 

of material, which is not a straightforward process since data dispersion is present when it 

comes to experimental testing of concrete. In this paper, finite element simulation is 

performed regarding one of bridge supports after a long period of operation. The goal of this 

work is modeling a part of the bridge support using concrete material model that includes 
non-linear behavior of the material.  

As a sample for calculations we took the motorway bridge crossing railway tracks in the 

town of Svobodnyi, Amur region, Russia. Two spans of this bridge collapsed on October 9, 

2018. At the moment of collapse a lorry truck was on the bridge and a freight train was 

passing under. Figure 1 contains photo showing the collapsed bridge.  

The bridge superstructure consists of several spans with the following lengths: 1×18.0 m 

+ 3×33.0 m + 1×18.0 m. In the present paper, one bridge support is considered which consists 
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of an L-shaped beam lying on six columns (Fig. 2). The support is made of reinforced 

concrete. Rebars are introduced only in the L-shaped beam since the crack appeared in the 

beam and was followed by bridge collapse.  

2 Concrete Damage Plasticity (CDP) model 

The Concrete Damage Plasticity (CDP) model is selected for this study as this model has the 

potential to represent complete inelastic behavior of concrete both in compression and in 

tension, including damage evolution in material. This model assumes two main failure 

mechanisms in concrete – compressive crushing and tensile cracking. The complete behavior 

of material is captured by uniaxial compression (Fig. 3) and tension curves (Fig. 4).  
 

 

Fig. 1. Bridge structure after collapse, Source: http://www.amur.info/news/2018/10/09/144368 

 

Fig. 2. The bridge geometry parameters at bridge supports 
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Fig. 3. Examples of uniaxial tension of concrete 

 

Fig. 4. Examples of uniaxial compression of concrete 

Since concrete is exposed to softening under compression and tension, the user should 
define modulus of elasticity as well as plasticity parameters and properties of 

compression/tension behavior. Compression and tension behavior is determined by inelastic 

strains and by corresponding damage variables: 𝜀𝑐
𝑖𝑛, 𝜀𝑡

𝑖𝑛, 𝑑𝑐 , 𝑑𝑡. Inelastic strains are calculated 

by formulae: 
 

𝜀𝑐
𝑖𝑛 = 𝜀𝑐 − 𝜀𝑐

𝑒𝑙 , 𝜀𝑡
𝑖𝑛 = 𝜀𝑡 − 𝜀0𝑡

𝑒𝑙 ,                                                                       (1) 

 

where 𝜀𝑐/𝑡 is total strain, 𝜀𝑐
𝑒𝑙 , 𝜀0𝑡

𝑒𝑙 are elastic strains in compression and tension.  

 

Knowing the values of inelastic strains, one can calculate plastic strains using damage 

variables: 

𝜀𝑐
𝑝𝑙

= 𝜀𝑐
𝑖𝑛 −

𝑑𝑐

1−𝑑𝑐

𝜎𝑐

𝐸0
;  𝜀𝑡

𝑝𝑙
= 𝜀𝑡

𝑖𝑛 −
𝑑𝑡

1−𝑑𝑡

𝜎𝑡

𝐸0
,                                                         (2) 

where 𝐸0 is non-damaged modulus of elasticity.  

 

Damage variables are assumed to take the values of 0 ≤ 𝑑𝑡,𝑐 ≤ 1, where 0 corresponds 
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to non-damaged material and 1 corresponds to complete failure of material at a point of 

calculation (integration point). There are a lot of different damage evolution equations [1, 2, 

3]. In this work exponential evolution is assumed: 

𝑑 = {
0,

1 − 𝑒−𝑏(𝜀−𝜀0)𝑔
,

  𝜀 < 𝜀0

  𝜀 ≥ 𝜀0
 ,                                                                               (3) 

where b and g are material constants: b defines how fast the damage (d) approaches 1 and 

g governs the shape of the curve; 𝜀0 represents threshold value.  

Simulation is based on real material data tested in laboratory. Since only compression 

results reaching the peak value of compression strength were tested, the rest of the material 

data are taken from reference papers [4, 5].  

3 Experimental researches 

In order to obtain the strain and stress properties of concrete some experimental research was 

undertaken in the Mechanical Laboratory named after Prof. N.A. Belelubsky, Emperor 

Alexander I St. Petersburg State Transport University. The research was performed on the 

core samples with 53 mm diameter that were extracted from a piece of the bridge concrete 

structure brought directly from the site of the bridge collapse. Tests were made in December 

2018 in accordance with the acting standard GOST 28570-90: Concrete. Methods of 

determining strength using structural samples. To prepare the stress-strain diagram and to 

determine the Poisson ratio 4 strain-gauge sensors (2 longitudinal and 2 transverse ones) were 
attached to each sample; and the MIC-036 measuring and computing complex was used to 

record signals (Fig. 5). 

 

Fig. 5. Compression test of the core sample 

As a result, the concrete compression and damage diagrams were obtained (Fig. 6, 7), 

which were then used for the purpose of finite element calculation.  
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Fig. 6. Diagram of uniaxial compression 

 

Fig. 7. Diagram of damage evolution during compression 

4 Material parameters 

In order to describe compression softening, approximation of compression curve was 

obtained using the formula Hsu L.S. and Hsu, C.-T.T. (1994) (Fig. 5, 6): 

𝜎𝑐 = 
𝛽(

𝜀𝑐
𝜀0

⁄ )

𝛽−1+(
𝜀𝑐

𝜀0
⁄ )

𝛽
 

𝜎𝑐𝑢 ,   𝛽 =  
1

1−(
𝜎𝑐𝑢

𝜀0Е0
⁄ )

𝜎𝑐𝑢,                                                                   (4)  

where Е0 represents the initial modulus of elasticity, 𝜀0 represents the peak strain (𝜎𝑐𝑢). 

The maximum value of strain is taken to be at the softening part of the curve where stress 

equals to 0.3 of the maximum stress. 

When it comes to tension, different forms of tension stiffening models are presented in 

the literature. In this work a modified version of the model developed by Nayal and Rasheed 

(2006) [6] was used. This model was selected since it indicates similarity to the tension 

stiffening model needed for Abaqus CDP model. This model was originally based on 

homogenized stress-strain relationship developed by Gilbert and Warner (1978), which 

accounts for tension stiffening, local bond slip effects and tension softening. This model 
describes two stages of crack formation, primary and secondary. Nayal and Rasheed model 

and its modification [6] are presented below (Fig. 8). The modification is introduced to avoid 

run time errors in Abaqus. 
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Fig. 8. Uniaxial tension of concrete 

The sudden drop from maximum tensile stress 𝜎𝑡0 to 0.8𝜎𝑡0 at critical tensile strain 𝜀𝑐𝑟, 
as used by Nayal and Rasheed (2006) [6] and Gilbert and Warner (1978), is slanted from 

(𝜀𝑐𝑟 , 𝜎𝑡0) to (1.25 𝜀𝑐𝑟 , 0.77 𝜎𝑡0) to avoid run time errors in Abaqus material model. After 

this point, the stress-strain curve follows exactly the Nayal and Rasheed (2006) tension 

stiffening model in both primary and secondary cracking areas but stops at (8.7 𝜀𝑐𝑟 , 0.10𝜎𝑡0) 
to avoid Abaqus run time errors. This procedure matches the procedure used in [7]. Fig. 9 

and 10 shows concrete strain diagrams for 5% and 10% ratio between concrete tensile 

strength and concrete compression strength. Table 1 contains parameters needed for the 

concrete model description: β is the angle in the plane of the first and the second stress tensor 

invariants, fb0/fc0 is the ratio between concrete uniaxial and biaxial stress strength, e is the 

eccentricity accounting for the approach speed of plasticity potential function asymptote [8] 

 

 

Fig. 9. Diagrams of uniaxial tension 
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Fig. 10. Diagrams of damage evolution 

 

Table 1. Parameters of material 

E,  

GPa 

ν β 𝑓𝑏0
𝑓𝑐0

⁄  
e К 𝜎т,  

MPa 

𝜎𝑐 , 

MPa 

50 0.19 38° 1.16 0.1 0.67 6.6/3.3 59 

Parameters describing the concrete damage curve are both obtained in the experiment and 

borrowed from [1]. They are shown in Table 2.  

 

Table 2. Damage evolution parameters 

𝑑 = 1 − 𝑒−𝑏(𝜀−𝜀0)𝑔
 B g 𝜀0 

Compression 1312 1.05 0.0015 

Tension 5% 1721 1.07 0 

Tension 10% 1721 1.07 0 

According to the bridge project data, the rebar steel relates to Class С235, its yield point 

being 𝜎𝑇 = 235 𝑀𝑃𝑎 and Poisson ratio 𝜈 = 0.3. A perfectly plastic model is selected as a 

model of steel.  

5 Finite element model 

In this work, the concrete damage plasticity model was used to investigate the damage 

development in the bridge support that had led to collapse of the superstructure. Finite 

element calculations were performed in the Abaqus finite element software. In order to 

reduce time of calculation a submodeling technique was used. To perform this kind of 

analysis a global model with coarse mesh was created, whose results were used for setting 

boundary conditions for the submodel. The mesh of the submodel was then made finer to 

achieve better results. Globally, a linear material model was used with non-linear 

displacements and deformations. Further, a smaller part was cut from the general model, and 

boundary conditions were set for it. The node-based approach was applied to the submodel 

boundary conditions that were presented by displacements calculated within the global 

model. The material model was then changed to the damage plasticity model for concrete. A 
cubic element C3D8R (linear cubic element with 8 nodes and reduced integration) was used 

for concrete and a truss element T3D2 (truss element with linear displacements) was used for 

rebars. Fig. 11 shows the finite element model and its components. Table 3 describes load 

applied to the bridge support, which equals to the total of bridge structures dead load and the 

live load of a dump truck near the support. 
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a) 

 

b) 

 

 

c) 

 

 
d) 

 

 

 
 

 

e) 

 
 

Fig. 11. Finite element geometry: a) bridge support with rebars shown, b) part of the rebar 

geometry, c) submodel geometry with boundary conditions and loads, d) location of submodel cut, 
e) geometry, boundary conditions and loads for original model 

Table 3. Load applied to the bridge support (from left to right), MPa 

Upper part 0.34 0.303 0.32 0.2 0.32 0.30 0.34 

Lower part 1.21 1.70 1.55 1.17 1.16 

 

6 Results 

Figures 12 to 15 below give the results of the finite element simulation. Two different models 
are shown, one with tensile strength of 6.6 MPa (10% of compression strength), and the other 

with tensile strength of 3.3 MPa (5% of compression strength). All figures on the left 

correspond to material with tensile strength equal to 10% of compression strength, and those 

on the right correspond to material with tensile strength equal to 5% of compression strength.  
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Fig. 12. Von Mises equivalent stress measure 

 

  

Fig. 13. Damage area 

 
 

Fig. 14. Damage area at the cross-section of the support where the biggest load is applied 

 

 

Fig. 15. Vector plot of axial stresses in rebars 
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7 Conclusion 

As far as the results are concerned, it can be clearly seen that damage areas differ for materials 

with two varying tension properties. In the material with the higher tensile strength the 

damage tends to spread more compared to the material with the lower yield value where the 

damage is concentrated in the corner of the L-shaped beam. This damage concentration can 

result from numerical inaccuracy that is typical of all models with softening behavior, where 
results are highly dependent on the mesh. Besides that, it can be seen that stress in rebars 

differs for two models, especially around the area with bigger damage evolution. In the 

3.3 MPa tensile strength model the stress in rebars is around 2.5 times bigger than in the 

6.6 MPa tensile strength model. This can be explained by damage localization and loss of 

concrete strength at those locations. Further investigations are needed to check the mesh 

sensitivity in the model with lower tensile strength.  
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