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Abstract. Meteorological factors are one of the natural factors, which affect ecosystem services value 
(ESV). Influence of meteorological factors was studied in Beijing-Tianjin-Hebei region using ordinary least 
square (OLS) with geographical weighted regression (GWR). The main aim of this study was to reveal the 
differences in the influence mechanism at the global and local levels. The main meteorological factors 
influencing ESV were temperature and precipitation, followed by humidity. Days with annual daily 
precipitation≥0.1mm,   annual   minimum   precipitation   and   annual   average   relative   humidity   were   three  
important meteorological factors. Annual temperature range, annual minimum precipitation, days with 
annual  daily  precipitation≥0.1mm,  in  particular,  the  last  one  had  an  obvious  positive  effect.  The  positive  and  
negative effects of annual average relative humidity were coexisting, and the negative effect was the main. 
It was obvious that the spatial distribution characteristics of the local influence mechanism. The local model 
of GWR can better solve the spatial non-stationarity of the dependent and independent variables, thus it was 
better than the global model of OLS. The results also provide detailed field information on the different 
effects of meteorological factors at different locations.  

1 Introduction 
The impact of natural factors and human activities on 
global ecosystems is increasing, the resulting changes in 
ecosystem services and human well-being have become a 
focus of research attention [1]. The combination of 
natural factors and human activities affected ESV. That is 
to say, artificial factors and natural factors together led to 
spatial and temporal changes in the value of ecological 
service. The “driving forces” are a general term for the 
factors that cause changes in the ecosystem. There are 
five major types of driving forces: socioeconomic, 
political, technological, natural and cultural driving forces 
[2].The factors that directly affect the ecosystem process 
are called direct driving forces, which can be measured 
and identified at different precisions; by changing the 
direct driving force, indirect effects are called indirect 
driving forces, which determine the magnitude of action 
from its impact on the direct driving force [3]. Exploring 
the underlying mechanisms can provide an important 
basis for land management in an environment of greater 
human impact, it also helps to understand the trade-offs 
and synergies among multiple environmental factors [4].  

Utilization of water and soil resources will change the 
composition of terrestrial ecosystems, which play a key 

role in enhancing or weakening ecosystem services [5, 6]. 
Most studies about driving forces focused on the 
relationship between land cover/landscape changes and 
variation of ESV [7-10]. Based on the value assessment 
of land use and value coefficient, changes in land use will 
inevitably lead to changes in the value of ecological 
service, but it cannot reflect the intrinsic driving factors of 
the changes in the value of ecological service. Climate 
was very important to the spatial distribution of 
ecological service value [11-13], especially water-related 
ecosystem services [14-17]. In some studies, the selection 
of influencing factors was relatively casual, and the multi-
collinearity problem between the influencing factors was 
not considered. Traditional methods such as correlation 
analysis and multiple regression analysis were widely 
used. Some studies had good results which may be caused 
by multi-collinearity.  

In fact, the regression parameters are related to the 
geographical location. The regression parameters of the 
global model are estimated by the mean of the regression 
parameters in the whole region, which cannot reflect the 
spatial variation of the regression parameters. To this end, 
the SVCR (Spatially Varying Coefficient Regression) [18] 
and the SAR (Spatial Auto Regressive) [19] were 
invented by foreign scholars, and the regression 
parameters were related to the spatial position of samples. 
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Some scholars used a local smoothing idea and invented 
the GWR [20, 21], which can solve the problem of 
regression parameters with geographical location. This 
paper took 167 districts and counties in the region as the 
research objects, 19 meteorological factors were selected, 
as well as 4 ESV indicators. The multi-collinearity of 
independent variables was eliminated by removing 
variables, so the global model was established. Then the 
local model of meteorological factors was established by 
GWR. Therefore, the differences in the influence of 
meteorological factors at the global and local levels were 
revealed. 

2 Materials and methods 

2.1 Data and processing 
The meteorological data of the research units were 
derived from the China Meteorological Data Network 
(www.data.cma.cn), including 171 meteorological 
observatories in the region from 1981 to 2010 (see Table 
1). Because 171 meteorological stations do not cover 167 
research units completely, a small number of units 
without data were replaced by the mean of the 
surrounding units.  

Table 1. Main meteorological factors of the region. 

Factors Indicators’ meaning 

X1 Sea-level barometric pressure (hPa) 

X2 Station pressure (hPa) 

X3 Annual extreme maximum station pressure (hPa) 

X4 Annual extreme minimum station pressure (hPa) 

X5 Average temperature (℃) 

X6 Annual temperature range  (℃) 

X7 Average annual maximum temperature  (℃) 

X8 Average  annual  minimum  temperature  (℃) 

X9 Days  with  daily  maximum  Temperature  ≥  30℃  
(d) 

X10 Days with the lowest daily temperature ≤ 2℃  (d) 

X11 Annual average relative humidity (%) 

X12 Average annual precipitation from 20 to 20 (mm) 

X13 Average annual precipitation from 8 to 8 (mm) 

X14 Annual maximum precipitation (mm) 

X15 Annual minimum precipitation (mm) 

X16 Annual maximum daily precipitation (mm) 

X17 Days with annual daily precipitation≥0.1mm  (d) 

X18 Average annual wind speed (m/s) 

X19 Days  with  maximum  daily  wind  speed≥5.0m/s  (d) 

The ESV included Z1(total ESV), Z2 (ESV per unit 
area), Z3 (ESV per capita), Z4 (ESV per GDP), which 
came from the author's previous research results [22]. 
Regression analysis was carried out in spss22. It was 
found that meteorological factors had the greatest 
explanatory power for Z2 variation, the regression 

determination coefficient was 71.4%. In order to facilitate 
the interpretation of the model, Z2 was selected as the 
dependent   variable.   The   “input”   method   was   used   for  
regression analysis, and the established regression 
equation had severe multi-collinearity. In view of the 
specific scientific significance of meteorological factors, 
cull method was used to eliminate the multi-collinearity, 
so as to preserve the integrity of the meaning of the 
variables. X17, X15, X11, X6 were finally selected to 
enter the models, unnormalized residual was saved, 
drawing with * ZRESID as Y axis and * ZPRED as X 
axis. 

2.2 Global and local regression model 
The GWR was extended on the basis of the OLS, the 
regression parameters contained spatial position 
information of the sample points, namely: 

     y� = β�(u�, v�) + ∑ β�(u�, v�)𝑥𝑥��
�
��� + ε� i=1,2,…,n                                                   

(1) 

The position information of sample i (such as latitude 
and longitude) is (ui,vi),  the k-th regression coefficient is 
βk(ui,vi),   the   random   error   was   εi,  ε�~N(0,σ�), and 
Cov(ε�, ε�) = 0(i ≠ j) . The above formula can be 
simplified to 

   y� = β� + ∑ β��𝑥𝑥��
�
��� + ε�      i=1,2,…,n                     (2)  

If the regression coefficients of the various points 
were equal, GWR model become OLS model. 

GWR 4.0 can be used to explore the relationship 
between dependent and independent variables. Since the 
independent variables and the dependent variable had 
been standardized, only the geographic variation test 
option was checked, creation a Gaussian GWR model. 

The calibration standard selected the default AICc 
(AIC for small sample deviation correction). Since the 
model fit used an adaptive kernel, the optimal bandwidth 
for the golden section search was 54, that was to say, the 
nearest 54 units were used to estimate the local 
coefficients. The minimum AICc value was 266.935. 

3 Results 

3.1 Global influencing mechanism of 
meteorological factors 

3.1.1 Output of OLS model  

The determinant coefficient R Square decreased from 
0.707 to 0.623, and the adjusted R square decreased from 
0.692 to 0.616. However, the goodness-of-fit may be 
caused by severe multi-collinearity. The F value of the 
regression equation was 89.678, which was greater than 
Fa (m, n-m-1) = F0.05(3,163)=2.68, that was, the regression 
equation was significant at the 0.05 significance level, 
and the established regression equation was statistically 
significant. At the same significance level, |t|>ta(n-m-1) = 
t0.05(163) =1.65(except for the constant), the regression 
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coefficients were significant. In the collinearity statistics 
of the regression results, the tolerance of the independent 
variables was greater than 0.1, and the VIF (Variance 
Inflation Factors) was less than 10, the regression 
equation solved the multi-collinearity of independent 
variables well, so the global model was proposed and the 
result was more reliable. 

The Q-Q map of the unnormalized residual was 
plotted as shown in Fig.1, and the scatter plot for 
normalized residuals and normalized predictions was 
shown in Fig.2. 

The observed value and the expected conventional 
value were distributed near a straight line of 45°, so the 
unnormalized residual approximated a normal distribution, 
satisfying the requirement of OLS. With the change of the 
regression standardized prediction value, the regression 
standardized residual was similarly distributed near y=0, 
and the residual variance of prediction value was equal, 
so it was satisfied the requirement of OLS. 

 
Fig.1. Normal QQ plot of unstandardized residual. 

3.1.2 Analysis of the global influencing mechanism  

Among the meteorological factors, X17, X10, X6, X15, 
X1, X13, X12, and X19 were positively correlated with 
Z2, and the other 11 factors were negatively correlated. 
From the Pearson correlation coefficient, temperature and 
precipitation were the main influencing factors, such as 
X17, X15, X9, X10, X8, X5, X7 and X6, followed by 
humidity X11, then air pressure, such as X4, X3, X2 and 
X1, wind had the least effect, such as X18, X19. X17, 
X15 and X11 entered the global model, and they were 
three important factors. According to the previous 
research, the natural background conditions of land used 
in the region were different, and the spatial distribution of 
meteorological factors also had local differences, and the 
overall goodness-of-fit of the global model needed to be 
improved. Further analysis of the local influence 
mechanism was needed. 

 

Fig.2. Scatterplot of regression standardized residual and 
regression standardized prediction value. 

3.2 Local influencing mechanisms of 
meteorological factors 

3.2.1 Testing the fitting effect of GWR model 

Variance analysis of OLS and GWR models (see Table 2) 
and geographical variability test of local regression 
coefficients (see Table 3). 

Table 2. Analysis of variance by meteorological factors. 

Source SS DF MS F 

Global Residuals 62.515 162   

GWR Improvement 33.268 36.592 0.909  

GWR Residuals 29.247 125.408 0.233 3.8983 

Analysis of variance can find out whether global and 
local model have the same statistical performance. Since 
each point of the geographic weighting matrix was 
variable, the F-test in the table was an approximate test. 
The results showed that the GWR model improves the 
effect of global regression model, that was, the GWR 
model solved the problem of spatial non-stationarity well, 
and the fitting effect of the GWR was better than the 
global regression model. 

Table 3. Geographical variability tests of local coefficients. 

Variable F DOF for F test DIFF of Criterion 
Intercept 3.1355 3.227 134.654 -2.1738 

ZX6 2.6283 4.361 134.654 -0.3396 
ZX11 4.5477 4.595 134.654 -10.0979 
ZX15 3.8848 5.74 134.654 -8.2553 
ZX17 2.6190 5.755 134.654 -0.3401 

Note: positive value of diff-Criterion suggests no spatial 
variability in terms of model selection criteria. 
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F test: in case of no spatial variability, the F statistics 
follows the F distribution of DOF for F test. 

The test results included "standard deviation" of local 
term which compared the difference between the initial 
and the improved GWR model. If the improved GWR 
model was statistically better fitted, the value of the 
model comparison indicator will be less than the initial 
GWR, so if the "standard deviation" was positive, there 
was no significant spatial non-stationarity at the local. 
According to the test results, X6, X11, X15, and X17 
were all negative values, indicating that these four 
variables had spatial variability, and the F values did not 
obey the F-distribution of the F-test. 

It should be noted that if the difference between AIC 
or AICc is greater than 2, the global model is significantly 
different from the local model. If the difference is greater 
than 3, indicating that there is significant spatial 
differentiation between the dependent and the 
independent variables, GWR is better than the OLS. The 
fitting results of OLS and GWR (see Table 4). 

Table 4. Fitting results of OLS and GWR. 

Model AIC AICc CV R square 

OLS 321.8326 322.3576 0.4137 0.6234 

GWR 249.6673 266.9346 0.2925 0.8238 

It can be seen that the AIC and AICc values of the 
GWR were 72.1652 and 55.4229 smaller than the OLS, 
respectively, and the difference was much larger than 3, 
indicating that the GWR model was more reliable. At the 
same time, the CV of the GWR was also smaller than the 
OLS, further illustrating the reliability of the local GWR 
model. At the same time, the R-square and the adjusted 
R-square of GWR were increased by 0.2004 and 0.1532, 
respectively, the GWR model can explain the greater 
variation of Z2. GWR better solved the problem of spatial 
non-stationarity of dependent and independent variables. 
Therefore, the GWR was better than the OLS. 

3.2.2 Statistical analysis of local coefficients  

Studying the distribution of local regression coefficients 
can well analyse the spatial heterogeneity of independent 
variables. Descriptive statistics of local regression 
coefficients (see Table 5). 

Table 5. Descriptive statistics of local coefficients. 

Variable Mean STD Lwr 
Quartile 

Upr 
Quartile 

Intercept -0.1598  0.3654  -0.4563  0.1220  
ZX6 0.2698  0.2428  0.0741  0.4806  

ZX11 -0.1202  0.2826  -0.2898  0.0490  
ZX15 0.2745  0.2428  0.0417  0.4119  

ZX17 0.4565  0.3706  0.1330  0.6583  

Research showed that if the lower and upper quartile 
of the local coefficients did not fall within ±1 standard 
deviation of the global coefficients, the spatial 
distribution of variables was non-stationary [23]. The 
upper and lower quartile range of ZX6’s local coefficients 
were [0.074144, 0.480643], and the standard deviation 
range of global coefficients were [-0.030444, 0.103288]; 
the upper and lower quartile range of ZX11’s local 
coefficients were [-0.289759, 0.049026], the standard 
deviation range of the global coefficients were [-0.324527, 
-0.203439]; the upper and lower quartile ranges of 
ZX15’s and ZX17’s local coefficients were [0.041731, 
0.411948] and [0.13303, 0.658336], and the standard 
deviation range of global coefficients were [0.301975, 
0.401801] and [0.349686, 0.48018], respectively. That 
was, the upper and lower quartiles range of ZX6’s, 
ZX11’s, ZX15’s and ZX17’s local coefficients did not 
fall within ±1 standard deviation of global coefficients, 
the local coefficients of ZX6, ZX11, ZX15 and ZX17 all 
had spatial non-stationarity or heterogeneity. 

From the normalized local coefficients of four 
meteorological factors, it was known that different 
meteorological factors had different effects on Z2. There 
was a positive correlation between X6, X15, X17 and Z2, 
the three meteorological factors, especially X15 and X17, 
had the most positive effect on Z2. X11 and Z2 were 
positively and negatively correlated, negative effects were 
the main ones. There were 25, 33, and 19 units with 
negative effects, the proportion were all over 80%, which 
was 85.03%, 80.24%, and 88.62%, respectively. There 
were 67 research units with positive effects, and 59.88% 
of the research units had negative effects in the 
coefficients of X11. From the whole region, X11 had a 
positive and negative effect, negative effects played a 
major role. 

3.2.3 Spatial distribution of local regression 
coefficients 
In ArcGIS 10.2, the natural discontinuous point grading 
method (Jenks) was used for visual mapping, the 
distribution of local coefficients was shown in Fig.3. 

The spatial distribution characteristics of the local 
influence mechanisms were obvious. The most significant 
positive effect of X6 were located in Qinhuangdao and 
Tangshan, a small part of the border area between 
Baoding, Langfang and Zhangjiakou, and a small part of 
the southwestern in Handan and Xingtai, in most areas of 
the western region, there was a slight or no obvious effect. 
The positive effect of X6 gradually increased from 
northwest to northeast, east and south. The most 
significant negative effects of X11 were located in the 
Chengde and Zhangjiakou, and in the eastern part of 
Qinhuangdao, Tangshan, and parts of the border areas 
between Zhangjiakou and Hengshui, showing a slight 
positive effect; X11 was positive for Z2. The positive 
effect of X11 gradually enhanced from the north to the 
northeast and the south, especially the southeast. In 
Chengde and Zhangjiakou, X15 had the most positive 
effect, while in the south-central part of the region, it 
showed mild or no obvious effect; the positive effect of 
X15 increased gradually from the middle to the northeast 
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In ArcGIS 10.2, the natural discontinuous point grading 
method (Jenks) was used for visual mapping, the 
distribution of local coefficients was shown in Fig.3. 

The spatial distribution characteristics of the local 
influence mechanisms were obvious. The most significant 
positive effect of X6 were located in Qinhuangdao and 
Tangshan, a small part of the border area between 
Baoding, Langfang and Zhangjiakou, and a small part of 
the southwestern in Handan and Xingtai, in most areas of 
the western region, there was a slight or no obvious effect. 
The positive effect of X6 gradually increased from 
northwest to northeast, east and south. The most 
significant negative effects of X11 were located in the 
Chengde and Zhangjiakou, and in the eastern part of 
Qinhuangdao, Tangshan, and parts of the border areas 
between Zhangjiakou and Hengshui, showing a slight 
positive effect; X11 was positive for Z2. The positive 
effect of X11 gradually enhanced from the north to the 
northeast and the south, especially the southeast. In 
Chengde and Zhangjiakou, X15 had the most positive 
effect, while in the south-central part of the region, it 
showed mild or no obvious effect; the positive effect of 
X15 increased gradually from the middle to the northeast 
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and then to the northwest. In some areas of Shijiazhuang, 
Xingtai and Handan, X17 had the most positive effect, 
while in the south-eastern part of the region, such as 
Cangzhou, Hengshui and Xingtai, had a slight effect or no 
obvious effect; the positive effect of X17 gradually 
increased from the southeast to the southwest and 
northeast. 

 

 

Fig.3. Local coefficients’ distribution of meteorological factors. 

4 Discussion 

The dynamic interaction between the spatial distribution 
of biophysical cues and variable human actions, which 
can lead to spatial complexity of ecosystem services [24, 
25].Indirect drivers, such as intensifying of economic 
activities and growing of population concentrations, can 
trigger or strengthen direct drivers [26]. In particular, with 
the increasing intensity and extent of human activities, 
humans have made substantial impacts on most of the 
terrestrial biosphere [27]. Meteorological factors are one 
of the natural factors, it is also very important to study the 
influence mechanism of other factors on ESV, especially 
the socioeconomic factors closely related to human 
activities. 

Some studies have shown that climate change was 
important factor affecting ESV [28-30]. The above 
researches can draw preliminary qualitative or 
quantitative conclusions that meteorological factors have 
influence on ESV. They analysed the driving forces of 
meteorological factors from a global perspective. 
However, Temporal and spatial heterogeneity of 
meteorological factors exists objectively. Identifying the 
drivers of ESV and quantifying the range at which the 
variability comes to a steady manner will help managers 
to prioritize locations for different goals [31, 32]. The 
above researches couldn't point out the different effects of 

meteorological factors at different locations, which can't 
provide diversification guidance in policy application. 

In fact, some studies used GWR model to analyse the 
local driving mechanism of environmental factors[33-36], 
but the research on ESV was very rare. In our study, OLS 
and GWR were integrated used to quantitatively analyse 
the impact of meteorological factors, which can provide 
targeted information with policy making. It can not only 
find the key meteorological factors affecting the ESV 
from a global perspective, but also find the local 
differences in the role of key meteorological factors, 
which is more conducive to the regulation and 
management of the ESV. This observation indicates the 
importance of using local model to analysis ecosystem 
drivers and highlights the influence of failing to account 
for the spatial autocorrelation in the OLS models [17]. 

5 Conclusions 
This paper studied the global and local influencing 
mechanisms of meteorological factors on ESV by OLS 
with GWR in the region. The results showed that 
temperature and precipitation were the main 
meteorological influence factors, followed by humidity, 
and the drive of wind was the least. Meteorological 
factors were the key factors. Days with annual daily 
precipitation≥0.1mm,   annual  minimum   precipitation   and  
annual average relative humidity were three important 
natural influence factors. Annual temperature range, 
annual minimum precipitation, days with annual daily 
precipitation≥0.1mm,   in   particular,   the   last   one   had   an  
obvious positive effect. The positive and negative effects 
of annual average relative humidity were coexisting, and 
the negative effect was the main effect. It was obvious 
that the spatial distribution characteristics of the local 
influence mechanism. The local model of GWR solved 
the problem of spatial non-stationarity of independent 
variables and dependent variables, thus it was better than 
the global model of OLS. The results also provide 
detailed field information on the different effects of 
meteorological factors at different locations. 
 
This research was funded by National Key R&D Program 
of China (NO.2016YFC0503700), and Tsinghua Rural 
Studies PhD Scholarship (NO.201701), playing the role 
in the collection, analysis, and of data. 
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