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Abstract. Nonlinear system prediction plays an important role in the practical thermal process, and deep 
learning algorithm is now popular in nonlinear dynamic system modeling because of its powerful learning 
ability. In this paper, the dynamic artificial neural networks (DANNs), which can be divided into two 
different types with external dynamic characteristics and internal dynamic characteristics, are analyzed. The 
mathematical formulations of feedforward deep neural network (DNN), traditional recurrent neural network 
(RNN) and Long-Short Term Memory network (LSTM) models are given. Furthermore, the structure of 
deep Hybrid Neural Network (DHNN) is described. Finally, the applicability of the above models in the 
thermal nonlinear process with different structural features is discussed. Simulation experiments reveal that 
DANNs with internal dynamic characteristics more suitable for solving thermal nonlinear system modeling 
problems with unknown order, and DHNN based on LSTM model has performed much better in 
approximating the dynamics of the thermal process with state parameters.  

1 Introduction 
Recent years, system modeling has made great progress 
due to the huge demand for controller design, and 
process analysis [1, 2]. In many cases the model can be 
derived based on physical knowledge about the system 
by simplification [3]. However, most industrial systems 
are non-linear, especially thermal systems, and linear 
models cannot be used to correctly describe the dynamic 
behavior of the nonlinear system. In fact, it is difficult to 
model nonlinear system due to uncertainty (including 
unknown structure and parameters) [4]. Therefore, 
nonlinear system dynamic prediction is a significant and 
challenging task in thermal nonlinear process. 

System prediction is a method of identifying and 
predicting the dynamic characteristics of a system from 
measurements of the inputs and outputs. System 
prediction for nonlinear system usually has developed 
by focusing on specific classes of system and can be 
broadly categorized into five basic description 
approaches, each defined by a model class: Volterra 
series models [5], block structured models, neural 
network models [6], NARMAX models [7], State-space 
models [8]. The Volterra, block structured models and 
many neural network architectures can all be considered 
as subsets of the NARMAX model. Since NARMAX 
was introduced, by proving what class of nonlinear 
systems can be represented by this model, many results 
and algorithms have been derived based around this 
description. Most of the early work was based on 
polynomial expansions of the NARMAX model. These 
are still the most popular methods today, but other more 

complex forms based on wavelets and other expansions 
have been introduced to represent severely nonlinear 
and highly complex nonlinear systems. 

Artificial neural networks (ANNs) have been widely 
used for nonlinear system modeling due to its powerful 
approximation ability. According to approximation 
theory, if the number of hidden neurons is sufficient and 
even equal to the number of training samples, a single 
hidden layer neural network can approximate any 
nonlinear system to any desired accuracy [9]. However, 
a neural network with the number of hidden neurons 
equal to training samples is impractical, which will 
bring huge difficulties to the training of neural network. 
Therefore, increasing the number of hidden layers can 
solve this contradictory problem to some extent. 

Recently, the deep learning algorithm is now 
popular in nonlinear system modeling and prediction 
because of the strong nonlinear learning ability [10, 11]. 
Structurally, there are two types of neural networks: 
feed-forward neural network (FFNN) and RNN. In 
FFNN the input feeds forward through the network 
layers to the output and hence, only the forward 
connections are present between the neurons while in 
the case of RNN both feed-forward and feedback 
connections are present which makes them the nonlinear 
dynamic feedback systems. Only when the order of the 
dynamic system input and output is known or within a 
certain range, the data of the first n sampling moments 
of the input parameter and the output parameter can be 
added at the input layer of the FFNN, which making the 
overall network a nonlinear dynamic system, and the 
requirements for nonlinear dynamic process modeling 
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are met to some extent. But deducing the order of the 
plant is a relatively difficulty since most of the plant’s 
dynamics are very complex and are not fully understood. 
Compared with FFNN's difficulty, the neural network 
which include the dynamics directly into its structure 
can learn the dynamics of the system without requiring 
any apriori knowledge regarding the system. These 
neural networks with self-feedback loops are called 
RNN. They have been used successfully in sequence 
learning tasks, such as handwriting recognition [12], 
speech recognition applications [13]. The LSTM which 
has the ability to forget and remember past hidden states 
belongs to the RNN category [14]. However, the deep 
hybrid neural network based on DNN and RNNs is 
rarely applied in thermal nonlinear dynamic processes 
modeling/ identification. 

In this paper, we apply DNN, RNN, LSTM and 
DHNN based on LSTM models to thermal nonlinear 
dynamic prediction and compare the prediction ability 
of the above models in two situations: one is nonlinear 
dynamic objects with known order, the other is 
unknown input and output parameter order. The main 
outline of the paper is as follows: Section 2 gives the 
mathematical formulation of DNN, RNN and LSTM 
models. In Section 3 the Applicability of Deep learning 
algorithm in thermal nonlinear dynamic identification is 
discussed in theory. In Section 4 simulation experiments 
are performed by considering two types of thermal 
numerical examples. The performances of all three 
identifiers are tested and compared. The conclusion is 
given in Section 5. 

2 Theoretical foundations of DNN, RNN 
and LSTM models 
The memoryless steady-state artificial neural network 
can be extended to dynamic artificial neural networks 
(DANNs) by introducing dynamic elements (such as 
delay-operator), which can be used to predict the 
dynamic nonlinear characteristics of system. DANNs 
can be divided into two different types with external 
dynamic characteristics and internal dynamic 
characteristics. 

A brief mathematical theory of the deep neural 
networks which can represent the above types is 
introduced. 

2.1 DNN model 
 
The structure of DNN which is also called Multi-Layer 
perceptron (MLP) can be classed into three categories: 
input layer, hidden layers and output layer. As shown in 
Fig. 1, the number of hidden layers is always more than 
two layers. The mathematical model of DNN is given 
by: 
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Fig. 1. Structure of DNN 

Where 𝐻𝐻𝑙𝑙, 𝑊𝑊𝑙𝑙 and 𝐵𝐵𝑙𝑙  are the output, Weight matrix 
and bias of 𝑙𝑙th hidden layer respectively. f(·) is an 
activation function of each layer and nonlinear 
activation functions, such as: sigmoid, tanh and relu, are 
chosen. 𝑌𝑌 and 𝑋𝑋 are the output and input of the DNN 
model respectively. The Back Propagation (BP) 
algorithm is used to calculate the weight derivatives for 
approximating the solution of DNN iteratively. 

2.2 RNN model 

Traditional RNN is a structural-improved multilayer 
perceptron network by introducing dynamic elements 
inside the hidden layer [15]. DNN can only map from 
input to output vector (one-to-one mapping) [16], 
whereas RNN can map from the entire history of 
previous inputs to each output (sequence-to-sequence 
mapping). Here a simple RNN model structure is shown 
in Fig.2 which include: input unit, one output unit, and 
one recurrent hidden unit unfolded into a full network. 
The forward pass of an RNN is the same as that of a 
multilayer perceptron with a single hidden layer except 
that activations arrive at the hidden layer from both the 
current external input and the hidden layer activations 
from previous timesteps. The above structure can make 
the RNN take advantage of the information in any long 
sequence in theory. The forward calculation process of 
RNN is given by: 

1( )t t oy f Vs b−= +              (2) 

1( )t t t ss g Ux Ws b−= + +           (3) 

 

Fig. 2. Structure of RNN 
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In above formula, 𝑠𝑠𝑡𝑡−1 is the output of hidden layer 
at the time of (𝑡𝑡 − 1). 𝑥𝑥𝑡𝑡 is the input of hidden layer at 
the time of 𝑡𝑡. 𝑏𝑏ℎ and 𝑏𝑏𝑜𝑜  is the bias of hidden layer and 
output layer. 𝑓𝑓(·) is map function which is usually a 
nonlinearity such as tanh or relu. W, U, V are the weight 
matrixes in different network layers. Unlike with 
traditional DNN, which need to use different parameters 
at each layer, RNN shares the same parameters (U, V, W 
above) across all steps which can greatly reduce the 
total number of train parameters [17]. 

A classical algorithm has been devised to efficiently 
calculate weight derivatives for RNN: Back Propagation 
Through Time (BPTT) [18]. Compared with standard 
BP algorithm, the performance function 𝐸𝐸(𝑡𝑡) is not 
only related to the current hidden layer state, but also to 
the hidden layer state at the previous timesteps [19]. The 
gradient calculation of weight matrix is written as: 

1
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∂ ∂∑               (4) 
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Owing to the structure of RNN computing which 
adds the input of last time in the calculation process, the 
perception of the node in front of time node decreases as 
time goes by, which can be in other words, there is the 
gradient vanishing problem of RNN [20]. 

2.3 LSTM model 
 
LSTM networks solve the problem of vanishing 
gradients of RNN by splitting in three inner-cell gates 
and build memory cells 𝐶𝐶 to store information in a 
long-range context [21]. A typical LSTM networks cell 
is configured mainly by four gates: forget gate f, input 
gate  𝑖𝑖 , input modulation gate 𝑐̃𝑐  and output gate 𝑂𝑂 . 
Forget gate f decides when to forget the output results 
and thus selects the optimal time lag for the input 
sequence. Input gate 𝑖𝑖 takes a new input point from 
outside and process newly coming data. Memory cell 
input gate 𝑐̃𝑐 takes input from the output of the LSTM 
networks cell in the last iteration. Output gate 𝑂𝑂 takes 
all results calculated and generate output for the LSTM 
networks cell [22]. The typical structure of LSTM 
networks is shown in Fig. 3. 

 

Fig. 3. Structure of LSTM 

In LSTM model, a fully connected layer is applied 
on the output layer of the LSTM cell. Let us denote the 
input time series as𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑡𝑡) , hidden state 
cells as  𝐻𝐻 = (ℎ1, ℎ2,⋯ , ℎ𝑡𝑡) , and output sequence 
as 𝑌𝑌 = (𝑦𝑦1 ,𝑦𝑦2,⋯ , 𝑦𝑦𝑡𝑡). The computation of LSTM can 
be done as follows: 

( )t t hy f Wh b= +               (7) 

1 1( , , )t t t th H h c x− −=            (8) 

The LSTM structure depicted above is implemented 
through the following functions: 
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𝜎𝜎  and 𝑡𝑡𝑡𝑡𝑡𝑡ℎ  are applied which represent the 
specific, elementwise applied activation functions of the 
LSTM. The sigmoid layer outputs numbers between 
zero and one, describing how much of each component 
should be let through. The W terms again denote weight 
matrices. The algorithm used to efficiently calculate 
weight derivatives for LSTM is Back Propagation 
Through Time (BPTT) which is similar as the algorithm 
for RNN. 

3 Applicability of deep learning in 
thermal nonlinear system 
In thermal process, establishing accurate nonlinear 
dynamic model is of great significance for the control 
and prediction of thermal processes. The dynamic 
behavior of thermal nonlinear process is generally 
represented by a NARMAX models or a State-space 
models. 

3.1 Application of conventional deep neural 
network  

The nonlinear autoregressive moving average model 
with exogenous inputs (NARMAX model) can represent 
a wide class of nonlinear systems [7], and is defined as 

( ) [ ( ), ( 1), , ( ),

( 1), ( 2), , ( )]
p

p p p

Y k F X k X k X k m

Y k Y k Y k n

= − −

− − −




      (12) 

where Y(k) and X(k) are the system output and input 
respectively; m and n are the maximum lags for the 
system output, input typically set to m≤n; F[•] is some 
nonlinear function. The model is essentially an 
expansion of past inputs and outputs.  
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For many of times these plant’s dynamics are not 
fully understood due to the complex of system. Deep 
Neural networks are known to be good approximations. 
They are inherently nonlinear and with the help of 
learning algorithms they can learn the unknown 
dynamics of the given plant. The DNN、RNN and 
LSTM based identifiers is given by: 

ˆ( ) [ ( ), ( 1), , ( ),
( 1), ( 2), , ( )]

DNN

DNN DNN DNN

Y k F X k X k X k m
Y k Y k Y k n
= − −

− − −




 (13) 

ˆ( ) [ ( )]RNNY k F X k=              (14) 

ˆ( ) [ ( )]LSTMY k F X k=             (15) 

3.2 Application of deep Hybrid neural network  

In a general situation, it might be the case that some 
exogenous uncertain disturbance passes through the 
nonlinear dynamics and influence the outputs. A model 
class that is general enough to capture this situation is 
the class of stochastic nonlinear state-space models. A 
state-space model is usually obtained using 
thermodynamic physical laws [8], and the parameters to 
be identified usually have some physical meaning or 
significance. A discrete-time state-space model may be 
defined by the difference equations: 

( 1) [ ( ), ( )]
( ) [ ( ), ( )]

S k F S k X k
Y k G S k X k
+ =

=
          (16) 

Where 𝑌𝑌(𝑘𝑘) and 𝑋𝑋(𝑘𝑘) are the system output and 
input respectively; 𝑘𝑘 is a positive integer referring to 
time; The functions F and G are general nonlinear 
functions. The first equation is known as the state 
equation in which 𝑆𝑆(𝑘𝑘) is known as the state process 
and the second is known as the output equation. 

As shown in the equation, the output of the 
state-space model is not only related to the state 
parameters, but also to the input parameters at the same 
time. Therefore, the DHNN based on LSTM and DNN 
which can correspond to the feature is proposed. The 
simplicial structure of DHNN is shown in Fig. 4. The 
mathematical model of DHNN is given by: 

  𝑦𝑦𝑡𝑡 = 𝑓𝑓𝑖𝑖(ℎ𝑡𝑡 , 𝑥𝑥𝑡𝑡)              (17) 

1 1( , , )t t t th H h c x− −=            (18) 

Where, ℎ𝑡𝑡 can be calculated from equation (9)-(11). 
The function of concatenate can used to splice ℎ𝑡𝑡 and 
𝑥𝑥𝑡𝑡 as the input of equation (17). 𝑓𝑓𝑖𝑖(·) is an activation 
function of the ith layer which has the same 
mathematical structure as the DNN.  

 

Fig. 4. Structure of DHNN  

4 Simulation study 
In this section, the capabilities of DHNN based 
identification model for nonlinear dynamic system is 
tested and compared with RNN and DNN based 
identification models through thermal process examples 
with two different features which are described in detail 
in each example. The number of neurons in the hidden 
layer do have an effect on the overall learning and the 
training time. There are number of ways/methods 
developed in the literature to decide upon the count of 
hidden neurons. In addition, two evaluated indices for 
the prediction performance, among which the mean 
square error (MSE) and the coefficient of determination 
pronounced R squared (R2), are given as: 
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Where 𝑦𝑦𝚤𝚤�  denotes the average value of measured 
data. 

4.1 Example 1: Identification of thermal system 
without internal state parameters 
 
For some thermal systems, the nonlinear dynamic 
relationship between the input and the output is directly 
related without internal state parameter of physical 
meaning. Consider a nonlinear dynamical thermal 
system whose nonlinear relationship is assumed to be 
unknown and are given as in [23]: 

( 1) [ ( ), ( 1), ( 2),

( ), ( 1)]
p p p py k F y k y k y k

u k u k

+ = − −

−
     (21) 

Where unknown function has the following form 
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The identification structure of DNN, RNN and 
LSTM are given by Eqs. (23)–(25) respectively. 

ˆ( 1) [ ( ), ( 1), ( 2),
( ), ( 1)]

DNN DNN DNN DNNy k F y k y k y k
u k u k

+ = − −

−
  (23) 

ˆ( 1) [ ( )]RNNY k F X k+ =              (24) 

ˆ( 1) [ ( )]LSTMY k F X k+ =             (25) 

In this example, a total of 300 output–input training 
samples were generated from the plant. The training was 
continued for 20 epochs. During the training, the 
external input 𝑟𝑟(𝑘𝑘) is considered to be random having 
value distributed in the interval [−1, 1]. 

4.1.1 Discussion on the training simulation results 

The responses of all identifiers at the end of the 20th 
epoch of the training are shown in Fig.5. It is clear from 
the figure that LSTM and DNN are able to capture the 
dynamics of the plant much better than the RNN models. 
This suggests better approximation capability of DNN 
and LSTM. The various details of this example after 
training are shown in Table 1. 

 

Fig. 5. Models’ response at the end of training 

4.1.2 Discussion on the testing simulation results 

After the training, the next step is to test the 
performance of identifiers by using a new external input 
(whose values lie in a same range as that of input which 
was used during the training). This step is called as 
validation. This new external input is given by: 

2sin( )                                     if   400
250( )

2 20.8sin( ) 0.2sin( )       if   400 800
250 25

k k
u k

k k k

π

π π

 ≤= 
 + ≤ ≤


 (26) 

The corresponding responses of the LSTM, RNN 
and DNN based identifiers are shown in Fig.6. It can be 
seen that LSTM response is much closer to the plant’s 
response as compared to responses obtained with RNN 
and DNN identifiers. This shows that LSTM have much 

better ability of approximating the unknown nonlinear 
as compared to RNN and DNN. 

 

Fig. 6. Models’ response used test data 

Further, various details associated with this example 
are shown in Table 1. It can be seen from the table that 
minimum average MSE value is obtained with DNN 
and LSTM model. Also, LSTM required lesser number 
of parameters to be tuned compared with DNN. This 
makes it more computationally efficient than DNN and 
RNN. 

Table 1. Comparison of identifiers in terms of various 
parameters 

 DNN 
identifier 

RNN 
identifier 

LSTM 
identifier 

Input neurons number 5 1 1 

Structure of model 5-10-20-1
0-1 1-8-1 1-8-1 

Total count of 
parameters to be tuned 501 89 329 

Average MSE of 
training data 0.006 0.011 0.006 

R2 of training data 0.972 0.944 0.970 
Average MSE of test 
data 0.001 0.005 0.001 

R2 of test data 0.990 0.973 0.988 

4.2 Example 2: Identification of high-order 
thermal nonlinear system 

For many large thermal systems, the nonlinear dynamic 
relationship is established among the state parameter, 
the input and the output of the system. Furthermore, 
some state parameters of the thermal system are 
unmeasurable or inaccurate. This nonlinear dynamic 
modeling is a big challenge for the DNN model which is 
essentially a memoryless neural network. Consider a 
nonlinear dynamical thermal system, whose dynamics 
are assumed to be unknown and state parameter 𝑥𝑥(𝑡𝑡) is 
unmeasurable, is described by the following equation: 

2( ) ( ) ( )py k x k u k= −            (27) 

Here, the function of 𝑥𝑥(𝑡𝑡)  and 𝑢𝑢(𝑡𝑡)  has the 
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following transfer function: 

8
( ) 1
( ) (2 1)

X s
U s s

=
+

            (28) 

For the above nonlinear dynamic system, the 
dynamics of state parameter 𝑥𝑥(𝑡𝑡) with 𝑢𝑢(𝑡𝑡)  and y(𝑡𝑡) 
are unknown which means that the order of input 𝑢𝑢 
and output y  can’t be obtained. The identification 
structure of DNN only can be written in the following 
form: 

ˆ( ) [ ( 1), ( 2), , ( ),
( ), ( 1), , ( )]

DNN DNN DNN DNNy k F y k y k y k m
u k u k y k n
= − − −

− −




(29) 

Where 𝑚𝑚 and 𝑛𝑛 are the order which are unknown. 
 However, the above problem do not occur in the 

ANNs with internal memory structures, such as: RNN, 
LSTM and DHNN . Thus, the identification structure of 
RNN, LSTM and DHNN can be given by Eqs. (30): 

ˆ( ) [ ( )]NNY k F X k=              (30) 

Where NN is RNN, LSTM or DHNN. 

For the training purpose, total of 𝑘𝑘 = 1000 
input-output samples are generated from the plant. 𝑢𝑢(𝑡𝑡) 
represents the input signal given by: 

2 2( ) 0.7sin( ) 0.3sin( )
80 140

k ku k π π
= +        (31) 

In order to test the performances of these trained 
identification models and avoid over-fitting for the 
training data, we have considered the following 
different input signal for the validation purpose: 

2 2 2( ) 0.4sin( ) 0.1sin( )+0.5sin( )
170 60 100

k k ku k π π π
= +    (32) 

4.2.1 Discussion on DNN based simulation results  

The simulation experiment was run with different 
settings of m and n which represents the order of the 
input and output and was run for 50 epochs. It should be 
noted that m should not be greater than n. The 
prediction performance of DNN identifiers, which was 
expressed by R2, obtained at the end of the learning are 
shown in Fig.7. It can be seen that prediction 
performance of DNN identifiers increases gradually 
with the increase of m. The change of n has a certain 
impact on the prediction performance of DNN 
identifiers, but the impact is limited. Finally, prediction 
performance of DNN identifiers is not good and 
consumes computing resources in the case of unknown 
orders. 

 

 

 

Table 2. Comparison of identifiers in terms of various 
parameters. 

 

 
Fig. 7. R2 of models’ response used test data 

4.2.2 Discussion on RNN, LSTM and DHNN based 
simulation results 

The simulation was run for 50 epochs and in each epoch 
900 input–output samples were used. The responses of 
the RNN, LSTM and DHNN identifiers obtained at the 
end of the learning are shown in Fig.8. It can be seen 
that the response given by all the identifiers are close to 
the desired trajectory but DHNN identifier response is 
still slightly better than the response of other identifiers. 
Further, the details regarding the total number of 
parameters to be tuned in each identifier and the MSE 
value obtained during the training are given in Table 2. 

The validation responses of the identifier are shown 
in Fig. 9. It can be seen that all identifiers are following 
the gantry outputs corresponding to the new input. 
However, RNN and LSTM response is slightly Poor 
performance in partial dynamic process. This test shows 
that all recurrent identifiers were trained properly. 

 RNN 
identifier 

LSTM 
identifier 

DHNN 
identifier 

Input neurons 
number 1 1 1 

Structure of 
model 1-18-1 1-9-1 1-9-18-9-1 

Total count of 
parameters 305 406 775 

Average MSE of 
train data 0.003 0.002 0.001 

R2 of train data 0.988 0.990 0.995 
Average MSE of 

test data 0.006 0.003 0.001 

R2 of test data 0.978 0.988 0.994 
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Fig. 8. Models’ response at the end of training 

 
Fig. 9. Models’ response used test data 

5 Conclusions 
In this article, the dynamic artificial neural networks 
applied into thermal nonlinear modeling is analyzed, 
and the applicability of DNN, RNN, LSTM and DHNN 
model mentioned in this article is discussed. The above 
models are test on theoretical and experimental 
examples which contain thermal complex nonlinear 
system. Simulation results show that in almost all the 
cases examined, the LSTM and DHNN based on LSTM 
has shown superior modeling accuracy and has also 
shown more robustness as compared to the other 2 
identification models. Thus, DHNN based on LSTM can 
be regarded as a general identification network that can 
be applied to the identification of a wide class of 
nonlinear dynamic systems. 
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