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Abstract. Streamflow prediction is a vital public service that helps to 
establish flash-flood early warning systems or assess the impact of 
projected climate change on water management. However, the availability 
of streamflow observations limits the utilization of the state-of-the-art 
streamflow prediction techniques to the basins where hydrometric gauging 
stations exist. Since the most river basins in the world are ungauged, the 
development of the specialized techniques for the reliable streamflow
prediction in ungauged basins (PUB) is of crucial importance. In recent 
years, the emerging field of deep learning provides a myriad of new 
models that can breathe new life into the stagnating PUB methods. In the 
presented study, we benchmark the streamflow prediction efficiency of 
Long Short-Term Memory (LSTM) networks against the standard 
technique of GR4J hydrological model parameters regionalization 
(HMREG) at 200 basins in Northwest Russia. Results show that the 
LSTM-based regional hydrological model significantly outperforms the 
HMREG scheme in terms of median Nash-Sutcliffe efficiency (NSE), 
which is 0.73 and 0.61 for LSTM and HMREG, respectively. Moreover, 
LSTM demonstrates the comparable median NSE with that for basin-scale 
calibration of GR4J (0.75). Therefore, this study underlines the high
utilization potential of deep learning for the PUB by demonstrating the 
new state-of-the-art performance in this field.

1 Introduction
Providing reliable streamflow predictions in ungauged basins (PUB) has crucial importance 
for understanding hydrological cycle processes where there are none or episodic 
hydrometric records [1]. While the most river basins in the world are ungauged, there is 
also a recent tendency for shrinking the number of gauging stations worldwide [2].
Therefore, PUB continues to be a pressing topic in hydrological modeling and requires 
particular attention from the research community [3].

In recent years, the emerging field of deep learning has advanced many scientific 
disciplines, including hydrology [4]. Deep learning models, such as convolutional and 
recurrent neural networks, proved their ability to finding complex relationships in natural 
phenomena by utilizing the power of big data that is recently available in open domain [5].
However, the use of modern deep learning techniques for PUB is lacking.

* Corresponding author: ayzelgv@gmail.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/). 

E3S Web of Conferences 163, 01001 (2020) https://doi.org/10.1051/e3sconf/202016301001
IV Vinogradov Conference



The presented study aims to benchmark the prediction performance of deep learning for 
streamflow simulation in ungauged basins in comparison to standard and well-established 
technique of hydrological model parameters regionalization for 200 basins in Northwest 
Russia.

2 Data and Methods

2.1 Data

In the presented study, we use observed river streamflow data for 200 relatively 
undisturbed small-to-medium scale (10 < area < 10 000 km²) river basins in Northwest 
Russia (within domain of 25–57° E and 55–70° N). This data was digitized from the annual 
digest archives (hydrological yearbooks) in the framework of the R5 project [6]. The 
corresponding basin boundaries were semi-automatically digitized using a digital elevation 
map.

The source of meteorological data is the WFDEI global meteorological reanalysis
dataset [7]. WFDEI is based on the ERA-Interim atmospheric reanalysis and has a 0.5° 
spatial and daily temporal resolution. We extract gridded WFDEI precipitation (P) and air 
temperature (T) data at a basin-scale using a spatial averaging. Potential evaporation (PE)
was calculated based on Oudin’s formulation [8] using air temperature data.

2.2 Models

In the presented study, we use two models to simulate streamflow: (1) conceptual lumped 
hydrological model GR4J [9] that incorporates the CemaNeige snow routine [10] (Fig. 1), 
and (2) deep learning model, namely Long Short-Term Memory Network (LSTM, Fig. 2). 
Both models proved their efficiency for PUB in recent studies [11, 12].

 
Fig. 1. Conceptual schemes of GR4J hydrological model and Cema-Neige snow routine.
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Fig. 2. The standard LSTM cell (A) and LSTM model for streamflow prediction (B).

2.3 Experimental design

Fig. 3 shows the flowchart of the established benchmark experiment. 

Fig. 3. Flowchart of the benchmark experiment.

We use a 5-fold cross-validation technique to test the out-of-sample performance of two 
PUB techniques: (1) hydrological model parameters regionalization (HMREG) and (2) 
regional LSTM model. In the first step, we randomly split 200 available basins into five 
groups. Then, in the second step, we consider basins from one of the five groups as 
ungauged (i.e., we use them only for the evaluation) and the rest as of gauged (which we 
use to support the techniques under consideration). We repeat this exercise iteratively until 
every group, as well as every basin, has been considered as ungauged.

3

E3S Web of Conferences 163, 01001 (2020) https://doi.org/10.1051/e3sconf/202016301001
IV Vinogradov Conference



HMREG workflow for PUB is based on GR4J hydrological model and well-established 
nearest-neighbor regionalization technique [13], and can be summarized as follows:

1. For each ungauged basin in the corresponding group, find ten nearest donor basins 
from the set of the rest 160 gauged basins,

2. For each donor basin, calibrate the GR4J model against streamflow observations
using the global optimization method of differential evolution (for details see 
[14]),

3. For each ungauged basin, simulate streamflow using the GR4J model and ten
different optimal parameter sets obtained for respective donor basins. Then, 
calculate the ensemble mean of streamflow simulations.

LSTM-based workflow for PUB utilizes the entirely different idea that can be 
expressed in using all the data from the gauged group of basins for regional LSTM model 
calibration. To this end, LSTM-based workflow can be summarized as follows:

1. Calibrate parameters of ten regional LSTM models against streamflow
observations for 160 gauged basins. These ten LSTM models differ from each 
other by randomly assigned initial conditions at the beginning of the calibration 
procedure (for details see [15]).

2. For each ungauged basin in the corresponding group, simulate streamflow using 
ten calibrated regional LSTM models. Then, calculate the ensemble mean of 
streamflow simulations.

We use the Nash-Sutcliffe efficiency (NSE) metric to evaluate the daily streamflow
prediction efficiency of HMREG and LSTM-based workflows for PUB.

3 Results and Discussion
The results of the benchmark experiment are summarized in Fig.4. It is a common practice 
in PUB studies that the basin-scale calibration results provide a so-called “superlative 
estimate,” i.e., show the best performance estimate that can be reachable in case of using 
the hydrological model for streamflow prediction. In the presented study, GR4J showed a
median NSE of 0.75 with interquartile range (IQR; Q75-Q25) of 0.11, and the lowest NSE 
of 0.51. Thus, the prediction efficiency of GR4J for 200 river basins in Northwest Russia 
can be considered as satisfactory [16].

Fig. 4. Boxplots (left panel) and cumulative distribution functions (CDF) of NSE values obtained for 
200 basins in Northwest Russia.
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The standard baseline technique for PUB – HMREG – provides reliable results with a
median NSE of 0.61 with IQR of 0.25. Additionally, for 135 out of 200 basins, HMREG 
implementation ensures satisfactory results (NSE>0.5) in streamflow predictions in 
ungauged basins. However, there are 21 basins where NSE is negative, so HMREG has no 
skill at all. The obtained results confirm our previous study [17], where we showed that 
while model parameters regionalization technique based on spatial proximity provides 
reliable results for PUB, it cannot ensure uniform efficiency for a considerable portion of 
analyzed basins.

In the presented study, we propose to use the LSTM deep learning model as a regional 
hydrological model that can assimilate all the information from gauged basins during the 
calibration procedure (also training or learning). Then, the calibrated LSTM model can be 
used for streamflow simulations in ungauged basins utilizing meteorological reanalysis data 
as input forcing. Results show that the LSTM-based regional hydrological model 
significantly outperforms the HMREG scheme in terms of NSE. Thus, LSTM has a median 
NSE of 0.73 with IQR of 0.25. However, while HMREG provides comparable or better 
results than LSTM for 24 out of 200 basins, for 8 of 24 basins both schemes are not skilful
(NSE<0).

Additionally, LSTM demonstrates the comparable median NSE with that for basin-scale 
calibration of GR4J, which is 0.73 and 0.75, respectively (Fig. 4). Moreover, for 96 out of
200 basins, LSTM showed comparable or even better NSE compared to basin-scale GR4J 
calibration results. This finding revealed that the implementation of the regional LSTM 
model provides the new state-of-the-art prediction efficiency for PUB studies, and beyond.

4 Conclusions
In the presented study, we show the high utilization potential of deep learning for the PUB 
by demonstrating the new state-of-the-art performance in this field. Thus, the regional 
LSTM-based deep learning model for streamflow predictions in ungauged basins, on 
average, outperforms the standard hydrological model parameters regionalization technique 
(HMREG). Moreover, for almost half of analyzed basins, LSTM also outperforms the 
results of the hydrological model (GR4J) basin-scale calibration. Therefore, we underline 
the importance of adapting the new methods from the emerging field of deep learning for 
hydrological applications as they can demonstrate and set the state-of-the-art prediction 
performance in the field.

The reported study was funded by RFBR, project number 19-35-60005, and by RGS-RFBR grant 
under project number 17-05-41118.
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