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Abstract. The A-melt model was applied to assess the contribution snow 
and ice melting to river flow during the summer period of 2017 for the 
Bashkara and Djankuat glaciers located in the Caucasus. During the study 
period, the Djankuat river runoff amounted to 120 thousand m3, while the 
peak value of snow and ice melting was 300-400 thousand m3 per day, and 
on average 189 thousand m3. The significant influence of groundwater on 
the river flow is traced. The melt water contribution to the glacial lake 
Bashkara outburst manifested in the gradual accumulation of water large 
volumes over the summer period. The melting of snow and ice the day 
before the lake outburst reached 31 thousand m3, with an average value of 
192 thousand m3 for the Bashkara basin. The total melting volume of the 
Djankuat basin was 0.016 km3, and of the Bashkara basin – 0.017 km3. As 
a result, the A-Melt model demonstrates the evaluation ability of glaciers’ 
impact on mountain rivers runoff. 

1 Introduction  
Fresh water shortage is one of the global problems of our time. Glaciers are one of the main 
components of freshwater supplies on our planet. Nowadays general degradation of 
mountain glaciation in the world is observed [1-3], which leads, on the one hand, to an 
increase of rivers runoff at the alpine zone, and on the other hand, to a decrease of age-old 
storages of fresh water in glaciers [4]. This problem is especially relevant for the 
mountainous and arid regions of our planet. The example of glacial fresh water supplies 
exhaustion in the Central Caucasus is the representative glacier Djankuat, where since 1974 
the volume of the glacier has almost halved, by 2013 it was about 0.077 ± 0.002 km3[5]. In 
total, the glaciers of Caucasus area have decreased by 4.7 ± 2.1% or 19.2 ± 8.7 km2 from 
407.3 ± 5.4 km2 to 388.1 ± 5.2 km2 since 1987 to 2010 [6]. From 2006 to 2015 the volume 
of the Djankuat glacier decreased by 25% which shows an increase in the rates of glacier 
degradation [5].To assess the melting of glaciers and their contribution to the glacial runoff, 
the mathematical simulation method was used. This method is quite common and widely 
used in many mountainous areas of the Earth [4,7-10]. 

For the Caucasus region, two neighboring glaciers of Djankuat and Bashkara, which are 
typical valley glaciers, were selected as the objects of the study. This choice is due to the 
fact that the Djankuat glacier was the object of mass-balance observations since 1965, as it 
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was chosen as representative of the central North Caucasus during the International 
Hydrological Decade (IHD) – research program on water problems launched by UNESCO 
in 1965 [11]. The Bashkara glacier has two adjacent glacial lakes, where in 2017 there was 
a mudflow along the Adyl-Su river valley [12]. To study the contribution of glacial runoff 
to this phenomenon, the processes of snow and ice melting were simulated. The Djankuat 
glacier has already been the object of modelling in several studies [13-14]. 

2 Study area 
The Central Caucasus is the highest and most inaccessible part of the Greater Caucasus. Its 
borders run along the Elbrus in the west and Kazbek in the east, the average width of the 
mountain system varies from 180 to 110 km. The general direction of the mountain massif 
here is from the north-west to the south-east. The length of the Greater Caucasus on this 
section is 190 km, the average height is about 3400-3500 m. 

The mountain glacial basins of Djankuat and Bashkara are located in the drive-divide 
part of the northern slope of the Greater Caucasus Range, in the upper part of the river 
valley Adyl-Su, the right tributary of the Baksan River. The total area of the Djankuat basin 
is 8.05 km2, the average height of the glaciers in the basin is about 3250 m, and the surface 
not covered by glaciers begins from 3200 m to sea level. The watershed line in the relief is 
clearly expressed and partially runs along the Greater Caucasus ridge at an altitude of 3600-
4000 m. On the left, the border runs along the spur of Mount Dzhantugan, on the right – 
along the spur of Kurmychi. The lower boundary of the basin is located at an altitude of 
2680 m, so the basin is located in the altitude range of 2680-4000 m [15]. The Bashkara 
Glacier is located on the territory of the lake Lapa basin which has an area of 9.05 km2. The 
weighted average basin height is 3350 m, where the highest point of watershed also runs 
along the Main Range. The lower boundary of the basin is at an altitude of 2520 m. 

There are 4 glaciers in the Djankuat river basin: the Djankuat, Koyavgan, Viatau and 
Visyachii glaciers. The Djankuat glacier is a typical plain valley glacier. According to 2007 
data, the Djankuat glacier area was 2.930 km2; in 2013, the glacier area has dropped to 
2.488 km2 [5]. The volume of the glacier for 2013 was 0.077 km3 [16]. The thickness of the 
ice of the glacier reaches 100 m. The tongue of glacier descends into the valley to a height 
of 2710 m. 

In the same valley the glacial lake Bashkara was formed by the eponymous glacier. The 
Bashkara glacier has a length of 4 km and an area of about 3.84 km2, it is located in the 
upper part of the Adyl-Su basin and it is a valley glacier [17]. The first outbursts of Lake 
Bashkara were recorded in 1958, 1959 and 1960. By 2005, the area of Lake Bashkara was 
66.8 thousand m2, and the volume was about 800 thousand m3, the depth of the lake 
reached more than 30 meters. By 2016, the volume of the lake increased to 1,000 thousand 
m3. On September 1, 2017, the mudflow occurred in the Adyl-Su river valley [12]. As a 
result, the volume of water decreased by 800 thousand m3. The reason for this event is the 
abnormal amount of precipitation – 134 mm in two days.  

3 Methods and results 
The A-Melt model is based on the heat balance equation (1). Snow and ice melt under the 
influence of thermal energy coming to the surface of snow or ice. The heat balance of the 
surface of snow or ice is defined as [13]: 

ω = (Sb + Sdf)(1 – A) + Ea – Ez ± ωt± Qm ± Qt,   (1) 
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where Sb – incoming direct short-wave radiation; Sdf – diffused short-wave radiation; A – 
surface albedo; Ea – long-wave counter radiation of the atmosphere; Ez – long-wave 
radiation of the Earth's surface; ωt – turbulent sensible and latent heat fluxes; Qm – heat flow 
through the debris cover; Qt – energy change due to snowpack processes. 

The input data includes the following characteristics measured with an hourly or other 
time step: 1) Sg – total short-wave radiation at a horizontal site, W/m2; 2) Ea – long-wave 
counter radiation of the atmosphere, W/m2; 3) T (H) – air temperature at different elevation 
in the basin, °C; 4) U – wind speed, m/s; 5) relative humidity, %; 6) precipitation amount, 
mm. For modelling the file with the characteristics of the watershed surface over a regular 
net, including elevation, snow cover melting off dates, firn line, debris extend and thickness 
distribution, glacier outlines was prepared by using the ArcGIS program. The 
meteorological data as well as the Djankuat river hydrograph for the modelling period were 
obtained from the open-access database [18]. 

The results of the Djankuat river hydrograph separation into liquid precipitation and 
melt runoff components after [19] were used in the study. The material of the current state 
of glaciation, orography, topography and climate has been collected and described. The 
current trends of glacial runoff were assessed. The glaciation regime was analyzed relying 
on the materials of observations at the Djankuat research station since 1965. 

To achieve the objectives, various research methods were used: calculation of the 
balance components of glaciers using mathematical simulation; calibration of the A-melt 
melting model using glaciological ablation observation data; decoding satellite images; 
spatial-temporal assessment of the minimum, average and maximum water discharge in the 
study area using the analysis of differential-integral curves; measurement of water 
discharge at the hydrological gauge "Djankuat"; recovery of missing data by building 
empirical dependencies. 

 
Fig. 1. Verification of the A-Melt model for the Djankuat glacier. 

Modeling of the Djankuat and Bashkara glaciers melting was carried out for the period 
from the 13th of June to the 7th of September 2017. The choice of this period is associated 
with the lack of meteorological data, including for winter time. The modelling results were 
verified using the data on the Djankuat glacier ablation, the measurements were performed 
on the ablation stakes net [17]. Using regular observations, the model was calibrated by 
comparison of actual data (measured glacier mass balance using ablative rails, snow-
measuring data at the beginning of the summer period), and the model results (Fig. 1.). As a 
result, such parameters as albedo and temperature gradient were estimated. After 
verification of the model, the temperature gradient was assessed as 9.5˚C by 1 km of height. 
In the accumulation zone, correlation coefficient between the observed and modelled values 
is 0.93, and in the ablation zone, 0.94. 
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The highest value of melting during the summer period, about 4500-5500 millimeters of 
water equivalent (mm w.e), is observed in the ablation zone of the Djankuat glacier. The 
average total melting of the Djankuat glacier during summer period was estimated as 2788 
mm w.e. (Fig. 2a). The total volume of melting amounted to 0.016 km3. 

For the Bashkara glacier, the calculations were also performed using the A-melt model. 
Two zones are observed here with minimum melting rates. The first is the accumulation 
zone, where snow lies all year round. The second is a zone with a debris cover thickness of 
more than 30 cm. Here the average total melting was estimated as 200-500 mm w.e. The 
maximum values of 3500-4500 mm w.e. were estimated for the axial parts of the glacier 
with characteristic maximum ice flow rates. By June 13 2017, snow had already melted off 
in the lower part of the Bashkara lakes catchment area. As a result, for the most elevated 
parts, total melting of snow and ice reaches values of 500-1500 mm w.e. The average total 
melting for the Bashkara glacier during summer period is 2525 mm w.e. (Fig 2 b). The total 
melting volume is 0.017 km3. 

 
Fig. 2. The total melting of snow and ice for the Djankuat hydrological basin (a) and glacier Bashkara 
(b) in mm w. e. according to the A-melt model (gray bar – glacier boundary, orange square –Djankuat 
hydrological gauge). 

The comparison of Djankuat glacier melting dynamics and Djankuat river runoff shows 
that water discharge and glacier melting do not always correlate closely with each other, 
due to the effect of the delay in melt water routing (Fig. 2). The time lag between the end of 
melting and the reaction of the Djankuat river hydrograph varies from 2 days in June to 1 
day in July−August (Fig. 3a). The same or a bit shorter time lag is characteristic for liquid 
precipitation events (Fig.3b). The larger time lag in June can be associated with a wide 
spread of seasonal snow cover in the basin and the delayed meltwater and rainwater routing 
through snowpack. There is a significant influence of precipitation on melt runoff. The 
extreme event, when during 5 days, from 28 August to 1 September, the Djankuat and 
Bashkara basins received almost 200 mm of liquid precipitation led to a 2-fold increase in 
water runoff in the Djankuat River, from 60 to 120 thousand m3 per day (Fig. 2b). 
According to isotopic the hydrograph separation results, the resulting rise in runoff was by 
50% generated by the meltwater mobilized by the intensive rain flood from the subsurface 
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water horizons (Fig. 2b). The average value of melt runoff over the entire period was 45 
thousand m3, with a gradual increase towards the end of July and after a rather sharp 
decrease. In September, melt runoff was 9 thousand m3. In the last 7 days before the 
outburst of the Lake Bashkara 1 September 2017 melt runoff sharply decreased from 40 
thousand m3 to 5 thousand m3 due to decrease in solar radiation amount and air temperature 
under cyclonic weather conditions. However, over the entire summer period, large volumes 
of melted snow and ice affected this event in the form of accumulated water in the Lake 
Bashkara (Fig. 2b). 

At the time of the outburst of the Lake Bashkara, the total amount of melting of the 
Bashkara glacier for 15 days from 28 August to 31 August reached 158 thousand m3. At the 
same time, on 31 August the total amount of melting was only 47 thousand m3, with an 
average value of 192 thousand m3 per day for the study period. The contribution of glacial 
runoff in this period was minimal. The final difference between Djankuat and Bashkara 
basins is an inessential excess (0.001 km3) of melting water volume incoming to the river 
network of Bashkara, mainly due to the larger area of the Bashkara glacier more on 1.43 
km2. 

 
 

Fig. 3. Observation data at the Djankuat hydrological gauge: (a) flow volume of the Djankuat river 
(blue line), total volumes of melting snow and ice for the Djankuat glacier (orange line), precipitation 
(gray columns) and glacial runoff (green line); (b) melt runoff of the Djankuat River (blue line), 
subsurface feeding of the Djankuat River (green line), rain flow (green line) and precipitation (gray 
columns). 

4 Conclusion 
The processes of snow and ice melt at the Bashkara and Djankuat glaciers were simulated 
from 13 June to 7 September, 2017 in the context of glacial runoff assessment task. The 
average total melting for the Djankuat glacier was 2788 mm w.e. For the glaciers in the 
Djankuat river basin, the total melting volume was estimated as 0.016 km3. The runoff of 
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the Djankuat river on average during the study period was 120 thousand m3 per day, while 
in June the volumes of melting snow and ice reach 300-400 thousand m3, which is almost 3 
times more than the river runoff. The average value of the total volume of melting is 189 
thousand m3 per day, which is by 33% more than the river runoff volume. The maximum 
values of melt runoff are observed in late June – early July. The comparison of the 
Djankuat glacier melting dynamics and Djankuat river runoff shows that river flow and 
melt water from the glacier do not always correlate closely with each other, due to the 
effect of the delay in melt water routing. 

For the Bashkara glacier, the average total melting was 2525 mm w.e. The total melting 
volume was estimated as 0.017 km3. By the time of the outburst of the Bashkara lake, the 
total volume of melting of the Bashkara glacier for 15 days from August 28 to August 31 
amounted to 158 thousand m3. At the same time, on August 31 – only 47 thousand m3, with 
an average value of 192 thousand m3 per day for the study period. The contribution of 
glacial runoff these days was minimal. However, over the entire summer period, large 
volumes of melted snow and ice affected this event in the form of accumulated water in the 
Bashkara lake. 
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