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Abstract. Hydrodynamic conditions in a tidal estuary are very complex 
and depend on a wide range of factors. This was also demonstrated in the 
previous studies for the estuary of the Onega River, which were primarily
based on the analysis of field measurements. In this paper, the results of
numerical modelling performed using 1D and 2DH/3D «shallow water» 
approaches are presented, for summer and winter hydrological conditions
in the Onega River estuary. The models were built and calibrated using 
extensive field data, which allowed assessing the opportunities to model 
the temporal and spatial variability of water levels, discharges, and 
velocities in a dynamic environment of a tidal estuary.

1 Introduction
Good understanding of hydrodynamics in estuarine areas plays a very important role for a 
wide range of industrial and human activities and also serves as a basis for analysing the 
ecosystem processes in such complex environments. However, the actual hydrodynamic
regime of an estuary is formed under the influence of multiple factors, including tides, 
storm surges and river runoff, the role of which can also significantly vary in space and in 
time. Because of that, monitoring data is often very limited and is not able to cover all the 
conditions and potential situations. More extensive and detailed information about the 
processes in estuarine environments can be obtained by the means of numerical 
hydrodynamic modelling, which also opens the possibilities for simulating and analysing
various extreme scenarios. But this is only possible if several different episodes are 
provided with comprehensive field observations for calibration and validation of the model.

The objective of this paper was to simulate the hydrodynamic regime of the Onega 
River estuary based on detailed field data for both summer and winter period conditions 
using different modelling approaches (1D, 2D depth-averaged and 3D) in order to assess 
the perspectives of their application as a tool for determining the required hydrological 
characteristics for various activities and for assisting the decision-making processes in an 
environment of a tidal estuary.
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2 Data and methodology
Onega River estuary is located in the south-western part of the White Sea and it can be 
characterized as a typical tidal river estuary with a funnel shape (Fig.1). Mean annual 
discharge of the Onega River is about 500 m3/s. Mean annual tidal range at the mouth 
cross-section is about 2.4 m. The distance, over which tidal water level oscillations become 
negligible, is about 26 km [1].

In order to collect the data, necessary for numerical modelling, three field campaigns 
were carried out at the Onega River estuary, which covered a period of a rainfall flood 
(river discharge 1250 m3/s) in August of 2017 and low-flow periods with ice cover in 
January of 2017 and 2019 (river discharge 74.5 and 110 m3/s, respectively). The available 
data (Fig. 1) included detailed bathymetry, water level measurements at multiple locations 
(Z1-8) along the estuary and discharge measurements at two cross-sections (Q1-2, limited 
during the winter period). In-depth information on the data collection and its analysis are 
presented in [2]. 

Fig. 1. Study area and the available field data.

For modelling the hydrodynamic regime of the Onega River estuary in 1D 
schematization, HEC-RAS software [3] solving the full one-dimensional Saint-Venant 
equations was used. For modelling in 2D depth-averaged (2DH) and 3D schematizations, 
Delft3D model [4], which is based on non-linear shallow water equations, was applied. The 
downstream water level boundary of the modelled area in both cases was set at the point of 
the river mouth cross-section, where the Onega River flows into the White Sea (location 
Z1). Stationary river discharge was defined on a boundary located 31 km upstream, near the 
hydrological monitoring station Porog (Z8), where the flow dynamics is no longer affected 
by the sea water level changes. The geometry cross-sections in the 1D model were defined 
with a 500 m step (63 cross-sections in total). For the 2DH and 3D model simulations, the 
same grid in the horizontal plane was used with cell size varying from about 40x20 m in the 
upstream part of the modelled area up to about 100x50 m in the downstream part. For the 
3D model, 10 equal sigma layers were used in the vertical direction.
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Calibration of the 1D and 2DH models was performed separately for summer (8-9
August 2017) and winter (30-31 January 2019) periods over several tidal cycles by varying 
the Manning’s roughness coefficient values in order to achieve the best possible model 
results in comparison to the measured water level sand discharges. Measurements, collected 
in winter of 2017 (31 January – 1 February) were used for validation of the roughness 
coefficients, selected for the winter conditions. Besides, as a part of calibration, the 2DH 
model for the summer period was also extended to a 3D model, allowing also to analyse 
how the model reproduces not only depth-averaged velocities, but also flow velocity 
profiles. Velocity measurements were also available for both winter periods; however, it 
was not possible to compare them to the model results because the effect of additional 
roughness on the water surface due to ice cover, which significantly affects the vertical 
velocity distribution, was not included in the model.

During the calibration process for both models in 1D and 2DH schematizations, the 
Onega River estuary was divided into three sections, where different values for the 
roughness coefficient were defined: 1) between 0 and 10 km; 2) between 10 and 20 km; 3) 
upstream of the 20 km from the mouth cross-section. Such division is determined by the 
morphological structure of the estuary, in which the downstream part is wide and deep with 
almost zero bed slope, the upstream part is highly turbulent with rapids and an average bed 
slope of about 1 m/km, while the middle part acts as kind of a transitional zone with bed 
slope of approximately 0.15 m/km.

3 Results

3.1 Summer hydrodynamic conditions

Both 1D and 2DH models after the calibration showed nearly identical results in terms of 
predicted water levels and discharges, however, they were obtained with different values 
roughness coefficient. The comparison between two models is presented in Table, from 
which we can see, that in general slightly higher values were used in the 2DH model, 
particularly in the downstream section of the estuary: 0.025 compared to 0.02 in the 1D 
model. The difference in values for the middle and the upstream sections is smaller: 0.032 
and 0.038 in the 1D model and 0.033 and 0.039 in the 2DH model.

Table. Model calibration results: the Manning’s roughness coefficient values.

Period Summer Winter
Model 1D 2DH 1D 2DH

Section
0 – 10 km 0.02 0.025 0.07 0.08

10 – 20 km 0.032 0.033 0.07 0.08
20 – 30 km 0.038 0.039 0.135 0.135

Water levels and discharges were reproduced by the models with very high accuracy in 
terms of their range and time moments, at which the extreme values were observed (Fig. 2).
The difference between the measured and the modelled water levels on average is 1 – 2 cm 
and does not exceed 8 cm (4% of the tidal range at the seaward boundary). For the peak 
flood and ebb discharges the difference between measured and the modelled values at both 
locations does not exceed 70 m3/s, which is less than 5% of the discharge range. 
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Fig. 2. Model calibration results: water levels and discharges, August 2017.

Also, for the summer period, it was possible to analyze the 2DH/3D model performance 
for the depth-averaged velocities as well as for vertical velocity profiles. The comparison 
for the deepest point at the Q2 cross-section (6.4 km from the mouth) is presented in Fig. 3. 
There it can be seen, that velocities are reproduced with high accuracy during both flood 
and ebb (profiles 2, 3 and 4). A certain deviation between the measurements and the model 
is observed during the first ebb period (profile 1), where the model overestimates the 
velocities by about 0.2 – 0.3 m/s. The fact that one ebb period is reproduced well while the 
other is not can be explained by inconsistencies in the discharge measurements at this 
location, from which the velocities were derived, particularly, by the variation in the boat 
track throughout the measurements and absence of concurrent GPS position record.

Fig. 3. Model calibration results: depth average velocities and velocity profiles at location Q2 (6.4 km 
from the mouth), water depth for profiles are relative to the total water column height, August 2017.
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3.2 Winter hydrodynamic conditions

The results for the winter period were also nearly identical for models in 1D and 2DH 
schematizations. First, both models were calibrated based on data collected in January 2019 
and, similarly to the summer period, the best results in 2DH model for the downstream 
sections were achieved with slightly higher roughness coefficient values: 0.08 compared to 
0.07 in the 1D model. For the most upstream section roughness coefficients were identical 
for both models. From Table, in which roughness coefficients are presented for both 
summer and winter calibration, it can be seen that for the winter period their values are up 
to 3.5 times higher. 

The comparison between the modelled and the measured water levels is presented in
Figure 4. There it can be seen that for this period the mean water level along with the water 
level at high tide are underestimated, while the shape of the tidal wave is also distorted and 
this effect increases towards the upstream: maximum water level is underestimated by 
about 0.18 m at location Z3 (6.4 km) and by 0.25 m at Z4 (12.1 km).

Fig. 4. Model calibration results: water levels, January 2019.

The availability of measured water levels for another period during winter allowed 
performing validation of the selected roughness characteristics on independent data. The 
comparison of the model results with the measurements is presented in Fig. 5. A pattern, 
similar to what was observed during the calibration process, can also be seen for the model 
validation. The difference between the measured and the modelled tidal range increases 
towards the upstream: from about 0.2 m at Z3 (10% of the tidal range at this location) up to 
0.5 m (35%) at Z4 and 0.3 m (50%) – at Z5 (18.5 km). Accuracy of the model in terms of 
reproducing the shape of the tidal wave also decreases as it becomes more flattened towards 
the upstream. As a result, hydrodynamic models of the Onega River estuary for winter 
conditions can only be used for raw estimations of water levels and discharges and are 
limited to the downstream part of the area (up to 5 – 8 km from the mouth).

Fig. 5. Model validation results: water levels, January 2017.
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4 Discussion
Despite some of the earlier studies showing that reverse currents in a tidal estuary cannot be 
adequately reproduced using one-dimensional modelling approach based on the Saint-
Venant equations [5], the results obtained for the tidal estuary of the Onega River for the 
summer period demonstrate high accuracy in terms of modelling temporal variation of 
water levels and discharges over a tidal cycle. Moreover, the 1D model results also show 
good agreement with the results of the 2DH/3D model, which suggests that it can also be 
applied for conditions of a relatively large tidal river estuary during summer period if a 
problem is not specifically focused on either spatial or vertical distribution of the flow 
velocities allowing for a more rational use of the computation time. Meanwhile, the 
2DH/3D model also demonstrated good results in reproducing the depth-averaged 
velocities and velocity profiles. Overall, the results obtained for the Onega River estuary 
provide a good foundation for further development of a similar approach for a more 
complex object, such as the Northern Dvina River delta [6].

For the winter conditions, the modelling has shown an underestimation of the tidal 
range and distortion of the tidal wave shape, which became more significant towards the 
upstream parts of the estuary, while also significantly higher bed roughness coefficients had 
to be used. This can be explained by the fact that for real winter conditions flow is affected 
by friction not only at the bed but also at the water surface, which is generated by the ice 
cover that could not be reproduced by either of the models used in this study. Because of 
that, adjustments in the selected approach are required in order to provide reliable 
modelling results for the winter conditions.  
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