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Abstract. The concentration of main organic and inorganic pollutants 
(heavy metals, polyaromatic hydrocarbons, radionuclides) in surface 
waters and in water-soil solutions was analysed on three keysites within 
the permafrost zone: Tazovsky Peninsula (North-West Siberia), Kolyma 
Lowland (North Yakutia) and adjacent to Yakutsk (Central Yakutia). In the 
majority of sampling points that are not directly impacted by human 
activity, the pollutants accumulate in the uppermost organogenic and 
organo-mineral horizons of natural soils. At the human-affected keysites 
the major pollutants may accumulate not only in the superficial horizons of 
the disturbed soils due to the surface runoff but also in the central parts of 
the profile, in the material buried by cryogenic, solifluction or fluvial 
processes and in some cases – in the suprapermafrost horizons and in the 
upper layer of permafrost transported via suprapermafrost water runoff.

1 Introduction
Nowadays Russia experiences the new wave of increasing exploration in the Arctic: oil and 
gas production, coal mining, building and reconservation of military objects, Arctic Ocean 
sea-pass development, etc. All these activities are strongly connected with the hydrocarbon 
consumption mechanical impact and chemical pollution due to the high rate of 
environmental risks. In some cases, the ecological damage can be partly recovered by 
bioremediation and recultivation measures [1, 2]. Still unknown is the fate of large part of 
pollutants’ volume, which can potentially migrate via surface and suprapermafrost water 
runoff as well as downwards to the soil profile due to the active processes of cryogenic 
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mass-exchange and then laterally redistribute over the surface of permafrost and even 
penetrate into it [3, 4]. Geochemical evolution of these contaminants in polar ecosystems 
under global climate change and local impacts is poorly studied. Besides the local 
pollutants, the supertoxicants can also be accumulated in polar ecosystems: heavy metals, 
polyaromatic hydrocarbons (PAHs), radionuclides etc. Some of them migrate via 
atmosphere and hydrosphere [5], some via trophic chains [6]. However, the same as local 
pollutants, these toxicants’ fate in surface waters and cryogenic soils as well as in the polar 
ecosystems themselves within the permafrost zone is very poorly studied [7-9]. Arctic 
region have already become the depo of global pollutants from other regions of the planet.

2 Objects and methods

2.1 Objects and field methods

Field observations and sampling were conducted during the period of maximum active
layer thawing depth and suprapermafrost water runoff (August and September 2019) on
three keysites within the permafrost zone (Fig.): Tazovsky Peninsula (North-West Siberia), 
adjacent to Yakutsk (Central Yakutia) and on the Kolyma Lowland (North Yakutia). Soils
at “Tazovsky Peninsula” (forest-tundra) and “Yakutsk” (taiga) keysites are mainly 
developing on the sandy and silty-sandy light-textured deposits, active layer depths here 
often exceed 150-200 cm. Only in the overmoistured soils of boggy depressions active
layer varies within 100 cm. These two keysites are situated within relatively strong human-
affected regions with intensive hydrocarbon mining and consumption, abundant 
infrastructure objects and relatively dense population. Autonomous soils of “Kolyma 
Lowland” (arctic tundra) keysite are developing on silty loams with the average active layer 
depth around 60-80 cm. In the overmoistured depressions active layer does not exceed 50 
cm.

Surface waters and suprapermafrost soil-water solutions as well as the material of soil 
horizons were sampled from soil pits in the human-affected and background (directly
unaffected) sites on the watersheds, slope transition zones and in the runoff accumulation 
zones in the depressions. Soils were identified using the IUSS World Reference Base for 
Soil Resources [10]. Active layer depth was measured using mechanical probing with steel 
rod.

2.2 Laboratory methods 

Measuring of 137 s activity was carried out by -spectrometry using semiconducting Ge(Li)
and NaI(Tl) detectors. Bulk volume of heavy metals was measured using X-ray-
fluorescentric spectrometry (Spectroscan Max GV). Acid-soluble forms of heavy metals 
were measured by Analytik Jena novaA 350 atom-absorbing spectrometer. Analysis of 
PAHs was carried out using spectrofluorimetric method (Dionex ASE 350 Accelerated
Solvent Extractor and Lumachrome chromatograph). Bulk concentrations of oil 
hydrocarbons were measured using infrared photometry by AN-2, KN-2m and Lumex 
analyzers.
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Fig. Location of field sites. 1 – Tazovsky Peninsula (North-West Siberia); 2 – Yakutsk (Central 
Yakutia); 3 – Kolyma Lowland (North Yakutia).

3 Results and Discussion
The analysis of oil hydrocarbon contamination of the surface and suprapermafrost waters
and the 1:5 soil-water solutions at the sampling points within the human-affected areas of
all three keysites have mostly shown the low and sometimes medium-danger levels of
contamination of soils. The surface waters that partly supply the moisture regime of the soil 
profiles were analyzed for the oil hydrocarbon content and the study have shown the 
relatively low level of surface waters contamination (0.05-0.09 ml/l except for one sample 
that contained 0.96 ml/l of oil hydrocarbons). However, besides the obvious contamination 
of the superficial soil horizons (5.6-25.9 mg/kg at the “Yakutsk” keysite and 166.3-8950.0 
mg/kg at “Tazovsky” keysite), the increasing concentrations of hydrocarbons in the organo-
mineral mid-profile soil horizons buried by solifluction and fluvial processes (12.4-18.8 
mg/kg) and in the suprapermafrost soil material (166.3-407.5 mg/kg) should be also taken 
into account.

The analysis of the surface waters at the strongly human-affected sampling plot at the 
“Yakutsk” keysite (area adjacent to the long-term dumpsite) have shown the relatively high 
concentrations of some microelements that are exceeding the Russian governmental 
ecological maximum permissible concentrations (MPC): e.g. Ba > 2.7-4.9 MPC, Co > 3.2, 
Ni > 3.4, Pb > 4.9, Cu > 19.0, Fe > 50-132, Mn > 201-294, Zn > 459. Surface waters along 
the catena from the dumpsite at the watershed to the overmoistured boggy environment in 
the adjacent depression can be characterized as highly mineralized (700-1600 mg/l) and the 
mineralization increases downward the mesorelief. The concentrations of microelement 
stay high along the catena while the oil hydrocarbon concentrations fall (from 2.7 to 0.6
MPC). All of the water samples contain PAHs and phenols but within the MPC. The salt 
composition of the surface water here is mainly hydrocarbonate-magnesium-calcium but 
there is an increase of sulphates and sodium in the accumulative depressions in the 
mesorelief associated with the increasing of the mineralization rate.

Study of the acid-soluble forms of heavy metals at the “Tazovsky Peninsula” keysite 
have shown the increasing concentration of Cd (up to 3.3 mg/kg) and Pb (up to 29.2 mg/kg)
in superficial organo-mineral horizons of human-affected Histic Cryosols despite the 
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background (unaffected) soils can be characterized by relatively high concentrations of 
these elements as well. The analysis of acid-soluble forms of heavy metals in the Histic 
Spodic Cryosols of “Yakutsk” keysite have shown the pronounced accumulation of nearly 
all elements in the uppermost organic and organo-mineral soil horizons of nearly all 
sampled soils. But concentration of heavy metals is decreasing in the background (directly 
unaffected) soils unlike in the human-affected Cryosols where Pb, Cd, Co and As 
concentrations in the organo-mineral mid-profile soil horizons buried by solifluction and 
fluvial processes and in the suprapermafrost soil material can reach and even exceed those 
in the uppermost ones. No accumulation of heavy metals was obtained in the uppermost 
organo-mineral material, mid-profile soil horizons buried by solifluction and fluvial 
processes or in the suprapermafrost parts of Turbic Cryosols at the “Kolyma Lowland” 
keysite.

Samples from human-affected and background Turbic Cryosols from “Kolyma 
Lowland” keysite were analyzed to study the specific activity of 137Cs artificial isotope. It 
has been shown that only few of the samples from the uppermost organic and organo-
mineral soil horizons contain detectable amounts of this element (12.8-31.2 Bk kg-1). The
material of the central and lowermost soil horizons did reveal any 137Cs activity. This fact
strengthens the idea that this artificial radioisotope do not migrate with soluble organic 
forms downwards into the middle and lowermost parts of soil profile. Suprapermafrost soil
horizons here are often enriched with the water-soluble forms of biogenic elements (e.g. P, 
S, K, Ca, Na) which correlates with the downward increasing of total organic carbon in 
these soils.

The content of polyaromatic hydrocarbons (PAHs) was studied in the relatively long-
term buried and frozen (more than 6 years) soils (Histic Reductaquic Cryosols) on the 
keysite in North-West Siberia. The total sum of PAHs varies widely within 36.0-331.4 ng/g 
which is strongly connected with the genesis of the material and the total organic carbon 
content. Despite the total content of PAHs does not exceed the background values that are 
relevant for this region, the sum of “heavy” high-molecular PAHs of anthropogenic origin 
are presented in the samples of buried organo-mineral material and may reach 5.7% of the 
total PAHs (background unaffected soils contain only 0.2-0.4% of “heavy” PAHs). This 
fact strengthens the idea of the possible long-term conservation of these pollutants in frozen 
deposits and buried soils.

4 Conclusions
The studies of soils and water streams along the hydrologic-geomorphologic catenas from 
the autonomous forms of the mesorelief, where the contamination sources were detected 
down through the transition slope zone to the hydromorphic soils of the mesorelief 
depressions, have shown the pronounced environmental redistribution of pollutants: soluble 
salts, different forms of heavy metals, oil hydrocarbons. These elements and compounds 
accumulate in hydromorphic soils (with thick superficial organogenic horizon and well-
expressed) that develop in the depressions of mesorelief.
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the IPCBPSS RAS (0191-2019-0044), IGEM RAS, IB Komi SC UrB RAS (No AAAA-A17-
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