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Abstract. The linear best method for approximating the second 
derivatives of Hardy class functions defined in the unit circle at zero in 
accordance with the information about their values in a finite number of 
points forming a regular polygon is found. The paper is divided into three 

sections. The first contains the necessary concepts and results from the 
work of K.Yu. Osipenko. It also recalls some results obtained by S. Ya. 
Havinson and other authors. In the second section, the error of the best 
method is calculated, and the corresponding extremal functions are written 
out. The third proves that the linear best approximation method is unique, 
and its coefficients are calculated. 

1 Introduction  

Let W be some set lying in a linear complex space X and 𝐿, 𝑙1, … , 𝑙𝑛 −  linear complex 

functionals defined on X. If  𝑆(𝑡1, … , 𝑡𝑛) is a complex function of n complex variables, then 

the approximation error of the functional L by the values of the functionals 𝑙1, … , 𝑙𝑛 by the 

method S on the set W is the quantity 

𝑟𝑛(𝑆) = sup
𝑥∈𝑊

|𝐿(𝑥) − 𝑆(𝑙1(𝑥), … , 𝑙𝑛(𝑥)|. 

Complex function  𝑆0(𝑡1, … , 𝑡𝑛)  is called the best approximation method if 

𝑟𝑛(𝑆0) = inf
𝑆

𝑟𝑛(𝑠). 

The existence of the linear best method was proved in [1] 

𝑆0 = ∑ 𝑐𝑘𝑙𝑘(𝑥)

𝑛

𝑘=1

 

(under certain conditions on the set W). In addition, it was found that the error of the 

best approximation method can be calculated by the following formula  

𝑟𝑛(𝑆0) = sup
𝑥∈𝑊

𝑙1(𝑥)=..=𝑙𝑛(𝑥)

|𝐿(𝑥)|.                                                   (1) 

Let’s denote the unit circle by = {𝑧: |𝑧| < 1} , and the unit circumference by 𝐺 =
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{𝑧: |𝑧| = 1}. Let 

𝐻𝑝
1 = {𝑓(𝑧), 𝑓(𝑧) ∈ 𝐻𝑝 : ∫|𝑓(𝜁)|𝑝𝑑𝜑 ≤ 1

Γ

} − 

Be the unit ball in the Hardy space (1≤ p <∞) (see the definition of Hardy classes in [2], 

[3]). We note that the problems of optimal recovery of functions belonging to certain 

classes and derivatives of functions with respect to their values in a finite number of points 
have been studied in many papers (see, for example, [1], [4-12]). This work is a 

continuation of [13]. 

Let’s consider the following system of points forming a regular polygon 

𝑧1 = 𝑅, 𝑅𝑒𝑖
2𝜋
𝑛 , … , 𝑧𝑛 = 𝑅𝑒𝑖(𝑛−1)

2𝜋
𝑛 ,                                                    (2) 

where  𝑅 − set number;  0 < 𝑅 < 1. 

Let’s denote by 

𝐿(𝑓) = 𝑓′′(0), 𝑙1(𝑓) = 𝑓(𝑧1), … , 𝑙𝑛(𝑓) = 𝑓(𝑧𝑛) 

a system of linear functionals defined in Hardy space 𝐻𝑝,  where 1 ≤ 𝑝 < ∞. Then the 

error of the best approximation method (we denote it by 𝑟2,𝑝(0, 𝑧1, … , 𝑧𝑛))  can be 

calculated by the formula (see (1)) 

𝑟2,𝑝(0, 𝑧1, … , 𝑧𝑛) = sup
𝑓∈𝐻𝑝

1

𝑓(𝑧1)=..=𝑓(𝑧𝑛)=0

|𝑓′′(0)|.                                            (3) 

Recall some results from [14] (see also [15]). Let 𝜔(𝜁) be a complex function bounded 

on the circumference G. Then the following duality relation holds 

sup
𝑓∈𝐻1

1
|∫ 𝑓(𝜁)𝜔(𝜁)𝑑𝜁

G

| = min
𝜑∈𝐵(𝐾)

𝑣𝑟𝑎𝑖𝑚𝑎|𝜔(𝜁) − 𝜑(𝜁)| , (4) 

where  𝐵(𝐾) − the set of all bounded analytic functions in K. Moreover, the functions 

𝑓∗(𝑧) ∈ 𝐻1
1, 𝜑∗(𝑧) ∈ 𝐵(𝐾) are extremal in equality (4) if and only if the following equality 

holds almost everywhere on the circumference G 

𝑓∗(𝜁)[𝜔(𝜁) − 𝜑∗(𝜁)]𝑑𝜁 = 𝑒𝑖𝛿𝜆|𝑓∗(𝜁)|𝑑𝜑,                                   (5) 

where 𝛿 ∈ 𝑅,   and  𝜆 − the total value in the left and right side of equality (4). 

If now  𝑝 > 1.  And if  𝜔(𝜁) ∈ 𝐿𝑞(G)  (here 

 
1

𝑝
+

1

𝑞
= 1 ), then the following duality relation holds 

sup
𝑓∈𝐻𝑝

1
|∫ 𝑓(𝜁)𝜔(𝜁)𝑑𝜁

Γ

| = min
𝜑∈𝐻𝑞

{∫|𝜔(𝜁) − 𝜑(𝜁)|𝑞𝑑𝜑

Γ

}  
1
𝑞 .                           (6) 

The extremal function 𝜑∗(𝜁) is unique on the right side of equality (4) and on the right 

side of equality (6). The extreme function 𝑓∗(𝑧) on the left side of equality (6) is unique up 

to a constant factor 𝑒𝑖𝛿  (𝛿 ∈ 𝑅). In addition, in order for the functions 𝑓∗(𝑧) ∈ 𝐻𝑝
1   и  

𝜑∗(𝑧) ∈ 𝐻𝑝 to be extremal in equality (6), it is necessary and sufficient that the following 
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relation holds almost everywhere on the boundary G: 

𝑓∗(𝜁)[𝜔(𝜁) − 𝜑∗(𝜁)]𝑑𝜁 = 𝑒𝑖𝛼𝜆|𝑓∗(𝜁)|𝑝𝑑𝜑,                                        (7) 

where  𝜆 −  the total value in equality (6),𝛼 ∈ 𝑅.  Recall that the extreme function 𝑓∗(𝑧)  

satisfies the condition (for all 1 ≤ 𝑝 < ∞) 

∫|𝑓∗(𝜁)|𝑝𝑑𝜑 = 1.                                                                      (8)

G

 

Further, if 𝜔(𝜁) is the boundary value on the circumference G of the function 

𝜔(𝑧) meromorphic in the circle K with poles 𝛽1, … , 𝛽𝑚 (each pole is repeated as many 

times as its multiplicity is), then the product 

𝑅(𝑧) = 𝑓∗(𝑧)[𝜔(𝑧) − 𝜑∗(𝑧)]                                                                                   (9)  

analytically on the boundary G and has in K 

     𝑇 = 𝑚 − 1                                                                                                                (10) 

zeros. It is obtained in [14]-[15]   

𝑅(𝑧) = 𝐶
∏ (𝑧−𝛼𝑘)(1−𝛼𝑘̅̅ ̅̅ 𝑧)𝑚−1

𝑘=1

∏ (𝑧−𝛽𝑘)(1−𝛽𝑘
̅̅ ̅̅ 𝑧)𝑚

𝑘=1
,                                                                                        (11)  

where |𝛼𝑘| ≤ 1, 𝑘 = 1, … , 𝑚 − 1; 𝐶 −  constant number. 

We give some formulas that we will use later (see [13]). Let’s denote by 

𝐵(𝑧) = ∏
𝑧 − 𝑧𝑘

1 − 𝑧�̅�𝑧
−

𝑛

𝑘=1

                                                                               

the final Blaschke product, in which the points 𝑧1, … , 𝑧𝑛 are of the form (2). Then the 

following equalities hold 

𝐵(0) = −𝑅𝑛 ,                                                                       (12) 

𝐵(𝑗)(0) = 0,                                                                         (13) 

where  1 ≤ 𝑗 ≤ 𝑛 − 1. In addition, it was established in [13] (see [13], formula (42)) 

that 

𝐵′(𝑧𝑘) = 𝑒−𝑖(𝑘−1)
2𝜋
𝑛

𝑅𝑛−1𝑛

1 − 𝑅2𝑛
,                                                    (14) 

where  𝑘 = 1, … , 𝑛. 

2 Best recovery methods 

2.1. Finding the best method error 

Lemma 1. The following relation holds: 

𝑑 = sup
𝑔∈𝐻𝑝

1
|𝑔′′(0)| =

2
1
𝑞

𝜋
1
𝑝

.                                                              (15) 

Moreover, if 𝑝 > 1, then the extremal function 𝑔∗(𝑧) of problem (15) is unique up to a 
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constant factor 𝑒𝑖𝛿   (𝛿 ∈ 𝑅) and has the form 

𝑔∗(𝑧) = 𝑒𝑖𝛿
1

(2𝜋)
1
𝑝

𝑧2.                                                               (16) 

In the case when 𝑝 = 1, the extremal function of problem (15) is not unique. Any of the 

extremal functions of problem (15) with 𝑝 = 1 has the form 

𝑔∗(𝑧) = 𝑒𝑖𝛿
(𝑧 − 𝑎)(1 − �̅�𝑧)(𝑧 − 𝑏)(1 − �̅�𝑧)

2𝜋 ((1 + |𝑎|2)(1 + |𝑏|2) + �̅�𝑏 + 𝑎�̅�)
,                             (17) 

where 𝛿 ∈ 𝑅; 𝑎, 𝑏 − any complex numbers satisfying the conditions: 

|𝑎| ≤ 1, |𝑏| ≤ 1. 

Proof.  Since  𝑔∗(𝑧) =
1

(2𝜋)
1
𝑝

𝑧2 ∈ 𝐻𝑝
1,  then 

𝑑 ≥
2

1
𝑞

𝜋
1
𝑝

,                                                                             (18) 

For all  1 ≤ 𝑝 < ∞.  After this, we consider separately two cases: the case when 𝑝 > 1  

and when  𝑝 = 1. 

First,  𝑝 > 1  and 𝑔(𝑧) − any function belonging to the unit ball 𝐻𝑝
1.  Then 

|𝑔′′(0)| = |
2

2𝜋𝑖
∫

𝑔(𝜁)

𝜁3 𝑑𝜁G | ≤ 1
𝜋

∫ |𝑔(𝜁)|𝑑𝜑 ≤ 1
𝜋

(∫ |𝑔(𝜁)|
𝑝𝑑𝜑G )

1
𝑝

(∫ 𝑑𝜑G )

1
𝑞 ≤  1

𝜋
(2𝜋)

1
𝑞 = 2

1
𝑞

𝜋
1
𝑝

 .G   (19) 

 

This (see (18)) implies equality (15). The extremal function of problem (15) is unique 

for 𝑝 > 1 (up to a factor equal to unity in modulo) and has the form (16) (see (19) and the 

introduction). 

Let’s assume now that  𝑝 = 1.  In this case (see (15)),  𝑑 =
1

𝜋
. Let  𝑔∗(𝑧)  be any 

extreme function of problem (15) for 𝑝 = 1  (if there are several) and let 𝜑∗(𝑧) be the 

extremal function on the right side of duality relation (4) for the corresponding function 

equal to (see (19)) 

𝜔(𝜁) =
1

𝜋𝑖

1

𝜁3
. 

then (see (5)) these extremal functions satisfy the relation 

𝑔∗(𝜁) [
2

2𝜋𝑖

1

𝜁3
− 𝜑∗(𝜁)] 𝑑𝜁 = 𝑒𝑖𝛿𝜆|𝑔∗(𝜁)|𝑑𝜑.                                    (20) 

Since 𝑑𝜁 = 𝑖𝜁𝑑𝜑, it’s easy to verify that the functions  

𝑔∗(𝑧) =
1

𝜋
𝑧2, 𝜑∗(𝑧) = 0, 𝜆 =

1

𝜋
, 𝑒𝑖𝛿 = 1 

satisfy relation (20). Hence, 𝜑∗(𝑧) = 0 (𝑧 ∈ �̅�). It follows that any of the extremal 

functions 𝑔∗(𝑧) of problem (15) for 𝑝 = 1  satisfies the equation (see (9), (11)) 
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𝑔∗(𝑧)
1

𝜋𝑖

1

𝑧3
= 𝐶1

(𝑧 − 𝑎)(1 − �̅�𝑧)(𝑧 − 𝑏)(1 − �̅�𝑧)

𝑧3
, 

where 𝐶1 − some constant number;  |𝑎| ≤ 1, |𝑏| ≤ 1.  Therefore, 

𝑔∗(𝑧) = 𝐶(𝑧 − 𝑎)(1 − �̅�𝑧)(𝑧 − 𝑏)(1 − �̅�𝑧).                                        (21) 

Let’s find constant number C (𝐶 = 𝜋𝑖𝐶1). To do this, it is necessary to calculate the 

following integral (see (8)) 

∫ |𝜁 − 𝑎||1 − �̅�𝜁||𝜁 − 𝑏||1 − 𝑏𝜁̅̅ ̅|𝑑𝜑.

G

 

Let the point  𝜁 ∈ 𝐺, i.e. let |𝜁| = 1.  Then 

𝑑𝜑 =
𝑑𝜁

𝑖𝜁
, 𝜁̅ =

1

𝜁
, |𝜁 − 𝑎| = |1 − �̅�𝜁|, |𝜁 − 𝑏| = |1 − �̅�𝜁|. 

From here we obtain 

∫|𝜁 − 𝑎||1 − �̅�𝜁||𝜁 − 𝑏||1 − �̅�𝜁|𝑑𝜑 =

G

 ∫⌈𝜁 − 𝑎⌉2|𝜁 − 𝑏|2𝑑𝜑

G

=
1

𝑖
∫(𝜁 − 𝑎)(𝜁 ̅ − �̅�)(𝜁 − 𝑏)(𝜁̅ − �̅�)

𝑑𝜁

𝜁
G

=
1

𝑖
∫(𝜁 − 𝑎) (

1

𝜁
− �̅�) (𝜁 − 𝑏) (

1

𝜁
− �̅�)

𝑑𝜁

𝜁
=

1

𝑖
G

∫
(�̅�𝑏 + (1 + |𝑎|2)(1 + |𝑏|2) + 𝑎�̅�)𝑑𝜁

𝜁
G

= 2𝜋((1 + |𝑎|2)(1 + |𝑏|2) + �̅�𝑏 + 𝑎�̅�). 

Therefore (see (8))  

|𝐶| =
1

2𝜋 ((1 + |𝑎|2)(1 + |𝑏|2) + �̅�𝑏 + 𝑎�̅�)
. 

Therefore, the extremal function of problem (15) in the case when 𝑝 = 1 has the form 

(17) (see (21)). Conversely, it is easy to verify that a function of the form (17) is an 

extremal function of problem (15) for 𝑝 = 1. The lemma is proved. 

Theorem 1. The error of the best method for approximating the values of 𝑓′′(0) from 

functions belonging to the unit ball 𝐻𝑝
1 by their values at points 𝑧1, … , 𝑧𝑛    (of the form (2); 

𝑛 ≥ 3) can be calculated by the formula  

𝑟2,𝑝(0, 𝑧1, … , 𝑧𝑛) = 𝑅𝑛
2

1
𝑞

𝜋
1
𝑝

.                                                         (22) 

In addition, if 𝑝 > 1  extremal function 𝑓∗(𝑧) of problem (3) is unique up to a factor  

𝑒𝑖𝛿 ,   where  𝛿 −  constant real number and has the form 

𝑓∗(𝑧) = 𝑒𝑖𝛿
2

1
𝑞

𝜋
1
𝑝

𝑧2𝐵(𝑧).                                                            (23)    

If  𝑝 = 1, then there are infinitely many extremal functions of problem (3) and any of 

them has the form 
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𝑓∗(𝑧) = 𝑒𝑖𝛿
(𝑧 − 𝑎)(1 − �̅�𝑧)(𝑧 − 𝑏)(1 − �̅�𝑧)

2𝜋 ((1 + |𝑎|2)(1 + |𝑏|2) + �̅�𝑏 + 𝑎�̅�)
𝐵(𝑧),                 (24) 

where  𝑎, 𝑏 −  any complex numbers satisfying the conditions|𝑎| ≤ 1, |𝑏| ≤ 1 ;  𝛿 ∈ 𝑅.   

Proof. Let’s denote by 

𝐸 = {𝑓(𝑧): 𝑓(𝑧) ∈ 𝐻𝑝
1, 𝑓(𝑧1) =. . = 𝑓(𝑧𝑛) = 0}                             (25) 

the family of analytic functions in the circle K. First, we factorize the family of 

functions E. Let  𝑓(𝑧) ∈ 𝐸.  Denote (see (25)) 

𝑔(𝑧) =
𝑓(𝑧)

𝐵(𝑧)
. 

It is obvious that  

𝑓(𝑧) = 𝐵(𝑧)𝑔(𝑧),                                                         (26) 

where  𝑔(𝑧) ∈ 𝐻𝑝
1.  Conversely, any of the functions f(z) having the form (26) belongs 

to the family E. Since (see (12), (13)) 

𝑓′′(0) = 𝐵(0)𝑔′′(0) = −𝑅𝑛𝑔′′(0), 

then it follows that (see (15)) 

𝑟2,𝑝(0, 𝑧1, … , 𝑧𝑛) = 𝑅𝑛 sup
𝑔∈𝐻𝑝

1
|𝑔′′(0)| = 𝑅𝑛

2
1
𝑞

𝜋
1
𝑝

. 

It is clear that the extremal function of problem (3) for 𝑝 > 1 has the form (23), and for 

𝑝 = 1, any of the extremal functions of problem (3) has the form (24). 

2.2. Finding the coefficients of the linear best approximation method  

Let  ∑ 𝑐𝑘𝑓(𝑧𝑘) −𝑛
𝑘=1  linear best method of recovering the value of 𝑓′′(0) by the values of  

𝑓(𝑧1), … , 𝑓(𝑧𝑛), where 𝑓(𝑧) ∈ 𝐻𝑝
1, and points  𝑧1, … , 𝑧𝑛  has the form (2), and  𝑓∗(𝑧) is an 

extremal function of problem (3). Then, it is easy to verify that 𝑓∗(𝑧) is an extremal 

function of the problem 

sup
𝑓∈𝐻𝑝

1
|𝑓′′(0) − ∑ 𝑐𝑘𝑓(𝑧𝑘)

𝑛

𝑘=1

| = 𝑟2,𝑝(0, 𝑧1, … , 𝑧𝑛).                                         (27) 

Theorem 2. Let points 𝑧1, … , 𝑧𝑛  have the form (2) (𝑛 ≥ 3). Then the linear best method 
∑ 𝑐𝑘𝑓(𝑧𝑘)𝑛

𝑘=1   of recovering 𝑓′′(0) by values of functions at points 𝑧1, … , 𝑧𝑛  is unique 

(𝑓(𝑧) ∈ 𝐻𝑝; 1 ≤ 𝑝 < ∞), and its coefficients are found by the formulas 

𝑐𝑘 =
2

𝑛𝑅2
(1 − 𝑅2𝑛)𝑒−𝑖(𝑘−1)

2𝜋
𝑛 ,                                                                (28) 

for all values of 𝑘 = 1, … , 𝑛. 

Proof. Let 𝑓(𝑧) be any function belonging to the unit ball 𝐻𝑝
1 (1 ≤ 𝑝 < ∞).  Let’s 

consider the following integral 

𝐽 =
1

𝜋𝑖
∫

𝐵(0)

𝐵(𝜁)𝜁3
𝑓(𝜁)𝑑𝜁,                                                          (29)

G
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Let’s estimate the integral J in modulo (see (12), (22)) 

|𝐽| ≤
1

𝜋
∫ |

𝐵(0)

𝐵(𝜁)𝜁3
| |𝑓(𝜁)|𝑑𝜑 =

𝑅𝑛

𝜋
∫ |𝑓(𝜁)|𝑑𝜑 ≤

𝑅𝑛

𝜋
(∫ |𝑓(𝜁)|𝑝𝑑𝜑

G
)

1

𝑝
(∫ 𝑑𝜑

G
)

1

𝑞
≤

2
1
𝑞𝑅𝑛

𝜋
1
𝑝

GG
= 𝑟2,𝑝(0, 𝑧1, … , 𝑧𝑛).   (30) 

Let 𝑝 = 1.  Then (see (22)) 

|𝐽| ≤
1

𝜋
∫ |𝐵(0)||𝑓(𝜁)|𝑑𝜑 ≤

𝑅𝑛

𝜋
= 𝑟2,1(0, 𝑧1, … , 𝑧𝑛).                         (31)

G

 

Now we calculate the integral J. Denote 

𝐷(𝑧) =
𝐵(0)

𝐵(𝑧)𝑧3
.                                                                    (32) 

Function D(z) has singular points (poles) at points 0, 𝑧1, … , 𝑧𝑛 .  Then the function D(z) 

can be represented as 

𝐷(𝑧) =
𝑐−3

𝑧3
+

𝑐−2

𝑧2
+

𝑐−1

𝑧
−

𝑎1

𝑧 − 𝑧1

− ⋯ −
𝑎𝑛

𝑧 − 𝑧𝑛

+ 𝑣(𝑧),                       (33) 

Where 𝑣(𝑧) − analytic function in the circle K; 𝑐−3, 𝑐−2, 𝑐−1, 𝑎1, … , 𝑎𝑛 − constant 

numbers. Let’s find these numbers. It is obvious that (see (32), (13)) 

𝑐−3 = lim
𝑧→0

𝑧3𝐷(𝑧) = lim
𝑧→0

𝐵(0)

𝐵(𝑧)
= 1,                                                (34) 

с−2 = lim
𝑧→0

(
𝐵(0)

𝐵(𝑧)
)

′

= 𝐵(0) lim 
𝑧→0

−𝐵′(𝑧)

𝐵2(𝑧)
= 0,                                       (35) 

𝑐−1 = −𝐵(0) lim
𝑧→0

(
𝐵′(𝑧)

𝐵2(𝑧)
)

′

= −𝐵(0) lim
𝑧→0

𝐵′′(𝑧)𝐵2(𝑧)−2𝐵(𝑧)((𝐵′(𝑧))
2

)
′

𝐵4(𝑧)
= 0  (36) 

After that, we calculate the deductions at simple poles 𝑧1, … , 𝑧𝑛. We have (see (14)) 

−𝑎𝑘 = res
𝑧=𝑧𝑘

𝐷(𝑧) = lim
𝑧→𝑧𝑘

(𝑧 − 𝑧𝑘)
𝐵(0)

𝐵(𝑧)𝑧3
=

𝐵(0)

𝐵′(𝑧𝑘)𝑧𝑘
3 =

−𝑅𝑛(1−𝑅2𝑛)

𝑅𝑛−1𝑛𝑅3𝑒
𝑖2(𝑘−1)

2𝜋
𝑛

𝑒
𝑖(𝑘−1)

2𝜋

𝑛 =  −
1

𝑛𝑅2
(1 − 𝑅2𝑛)𝑒

−𝑖(𝑘−1)
2𝜋

𝑛  (37) 

Therefore, 

𝐽 =
2

2𝜋𝑖
∫ (

1

𝜁3
−

𝑎1

𝜁 − 𝑧1

− ⋯ −
𝑎𝑛

𝜁 − 𝑧𝑛

+ 𝑣(𝑧)) 𝑓(𝜁)𝑑𝜁 = 𝑓′′(0) − ∑ 2𝑎𝑘𝑓(𝑧𝑘).

𝑛

𝑘=1G

 

It follows that if 𝑓(𝑧) − any function belonging to the unit ball  𝐻𝑝
1 , then (see (30), 

(31)) 

|𝑓′′(0) − ∑ 2𝑎𝑘𝑓(𝑧𝑘)

𝑛

𝑘=1

| ≤ 𝑟2,𝑝(0, 𝑧1, … , 𝑧𝑛). 

Thus, the method ∑ 2𝑎𝑘𝑓(𝑧𝑘)𝑛
𝑘=1   is the linear best approximation method. From here, 

𝑐𝑘 = 2𝑎𝑘  (k=1,…,n) are the coefficients of the linear best approximation method and are 

found by formulas (28). 

We note that (see (28)) 

𝑐𝑘 ≠ 0                                                                                 (38) 
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for all  𝑘 = 1, … , 𝑛. Let’s consider the linear best approximation method ∑ 𝑐𝑘𝑓(𝑧𝑘)𝑛
𝑘=1 , 

in which the coefficients 𝑐𝑘 are calculated by the formulas (28) (k=1,…,n). Then 

sup
𝑓∈𝐻𝑝

1
|∫ 𝜔(𝜁)𝑓(𝜁)𝑑𝜁

G

| = 𝑟2,𝑝(0, 𝑧1, … , 𝑧𝑛), 

where 

𝜔(𝜁) =
1

2𝜋𝑖
(

2

𝜁3
− ∑

𝑐𝑘

𝜁 − 𝑧𝑘

𝑛

𝑘=1

). 

and, therefore, for all values  1 ≤ 𝑝 < ∞ the following relation holds (see (5), (7), (27)) 

𝑓∗(𝜁)(𝜔(𝜁) − 𝜑∗(𝜁))𝑑𝜁 = 𝑒𝑖𝛿1𝜆|𝑓∗(𝜁)|𝑝𝑑𝜑,                            (40) 

where   𝑓∗(𝜁) − extremal function of problem (3), 𝜑∗(𝜁) − extremal function on the 

right side of the dual extremal problem (see (4), (6)), 𝛿1 −  real constant, 𝜆 =
𝑟2,𝑝(0, 𝑧1, … , 𝑧𝑛). Note that function 𝑅(𝑧) = 𝑓∗(𝑧)[𝜔(𝑧) − 𝜑∗(𝑧)]  does not have zeros in 

the circle K (see (23), (24), (10); when applying formula (24), we must assume 𝑎 = 𝑏 = 0). 

Let’s suppose there is another linear best approximation method ∑ 𝑐�̆�𝑓(𝑧𝑘).𝑛
𝑘=1  

Then the following relation holds 

𝑓∗(𝜁) (
1

2𝜋𝑖
(

2

𝜁3
− ∑

𝑐�̆�

𝜁 − 𝑧𝑘

𝑛

𝑘=1

) − 𝜑1
∗(𝜁)) 𝑑𝜁 = 𝑒𝑖𝛿2 𝜆|𝑓∗(𝜁)|𝑝𝑑𝜑,             (41) 

where  𝜑1
∗ −  the extremal function on the right side in equality (6) (or in equality (4)) 

for the corresponding function 𝜔(𝜁); 𝛿2 − real number. Let’s consider the following 

function: 

𝑊(𝑧) =

1
2𝜋𝑖

(
2
𝑧3 − ∑

𝑐�̆�

𝑧 − 𝑧𝑘

𝑛
𝑘=1 ) − 𝜑1

∗(𝑧)

1
2𝜋𝑖

(
2
𝑧3 − ∑

𝑐𝑘

𝑧 − 𝑧𝑘

𝑛
𝑘=1 ) − 𝜑∗(𝑧)

. 

Since (see. (38)) 

lim
𝑧→0

𝑊(𝑧) =1,  lim
𝑧→𝑧𝑘

𝑊(𝑧) =
𝑐�̆�

𝑐𝑘
   (k=1,…,n),                       (42) 

then 𝑊(𝑧) −  function analytical in �̅� . Since relations (40) and (41) hold, then 

𝑊(𝜁) = 𝑒𝑖𝛿    (𝜁 ∈ G;  𝛿 = 𝛿2 − 𝛿1).  Since W(0)=1, then  𝑊(𝑧) = 1 for all values of 𝑧 ∈
�̅�. It follows from this (see (42)) 𝑐�̆� = 𝑐𝑘   for all values of  𝑘 = 1, … , 𝑛. Thus, for all 

values 1 ≤ 𝑝 < ∞  the linear best approximation method is unique. The theorem is proved. 

3 Results 

The error of the best method for approximating the values of 𝑓′′(0)   from functions of the 

class 𝐻𝑝, 1 ≤ 𝑝 < ∞ by their values f 𝑓(𝑧1), … , 𝑓(𝑧𝑛), where points 𝑧1, … , 𝑧𝑛  have the 

form (2) are obtained in this study. The corresponding extreme functions are written out. It 

is established that if 1 < 𝑝 < ∞, these extreme functions are unique up to a constant factor 

𝑒𝑖𝛿  (𝛿 ∈ 𝑅). If 𝑝 = 1, then the extremal functions are not unique. The type of all such 

functions is written out. It is proved that the linear best approximation method is unique 
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(for all 1 ≤ 𝑝 < ∞) , and all its coefficients are calculated. 

4 Conclusion 

Thus, the problem of the optimal recovery of the second derivatives of the functions of 

Hardy class at zero by their values in a finite number of points forming a regular polygon 

centered at zero is solved. It would be interesting to solve the problem of optimal recovery 

of derivatives 𝑓(𝑁)(0),  where 𝑁 − any natural number by values 𝑓(𝑧1), … , 𝑓(𝑧𝑛) 

(𝑓(𝑧) ∈ 𝐻𝑝 ), and points 𝑧1, … , 𝑧𝑛  form a regular polygon. 
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