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Abstract. High-voltage direct current (HVDC) transmission systems are a promising solution for long 
distances power transmission offshore wind farms. In order to satisfy the reliability requirements of 
receiving-end grid and system, the topology, operation and control of HVDC transmission systems for 
offshore wind farms should be paid more attention. Thus, the aim of this manuscript is to offer a 
comprehensive summary of existing topology, operation and control methods applied to HVDC 
transmission system for offshore wind farms. Special attention is provided to the ac grid fault through 
control methods, droop control methods, power sharing rules and specific requirements of HVDC system 
planning, model, design and investment. The results are important for understanding the operation of VSC-
HVDC in offshore wind farms. 

1 Introduction 
Recently, the energy problem has given rise to 
significant impacts on the life and production. Offshore 
winds have their advantages compared to onshore wind, 
which produce larger power. Due to the higher power 
and long distance transmission, DC transmission 
topology is currently the preferred for far offshore wind 
applications.  

HVAC and HVDC transmission systems have been 
compared in many papers for offshore wind farms 
projects. Based on the fault recovery ability, reference [1] 
showed the advantage of HVDC compared to HVAC. 
Although HVAC has an advantage for small power 
plants (less than 300MW), HVDC is more economical 
for a long distance transmission system[2]. Based on 
system loss, [3] studied that HVAC system is 12% more 
than HVDC for a long distance and large power plant 
system. Thus, the higher cost and device losses in 
maintenance are critical problems for traditional HVAC 
transmission for a long distance and large power wind 
farms. Reference [4] provided a novel transmission 
structure with ac cable and onshore converter. It is 
limited by the dc grid scale and ability of the receiving-
end grid. 

Due to large-scale development in short distance 
offshore wind resource, long distance and power wind 
plants are paid more and more attention to. Thus, 
HVDC transmission system is a pivotal element for 
offshore wind farms. VSC and LCC are two typical 
converters. Due to LCC cannot operate in island for an 
offshore converter, and LCC will bring frequent 
commutation failure for an onshore converter. LCC-
HVDC is inadaptable compared to VSC-HVDC in 

actual offshore wind farms projects. Extensive 
literatures introduce the operation and control methods 
of VSC-HVDC applied in actual projects. However, few 
literatures presents the VSC-HVDC for offshore 
windfarms. Thus, this paper will provide a 
comprehensive review for different VSC-HVDC 
topologies, operation strategies, and fault through 
methods.  

2 DC transmission topology and DC 
converter topology  

2.1. DC transmission topology 

Captions should be typed in 9-point Times. They should 
be centred above the tables and flush left beneath the 
figures. 

Fig. 1 shows simplified single line representations of 
DC transmission topologies. Five topologies existing in 
engineering or literatures are discussed in Table I. 
Point-to-point shown in Fig. 1(a) is a traditional 
transmission structure. Every wind farm has its offshore 
converter and dc line. It is easy to implement the 
protection configuration. Radial shown in Fig. 1(b) is 
also applied in actual project. Different wind farms are 
connected to a same offshore converter by ac cables. 
Radial+ shown in Fig. 1(c) is a novel structure which 
wind farms are connected to the offshore converter by 
dc cables. However the dc breaker has not been utilized 
in offshore wind farms, the cost and occupation is the 
key problem in the actual project. The ring structures 
shown in Fig. 1(d) and (e) achieve transmission 
flexibility, however the complicated protection 
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configuration and high cost will limit the application in 
offshore wind farms. 
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Figure 1: DC transmission topologies: a) point-to-point, b) 
radial, c) radial+, d) wind farm ring, e) substation ring 

Table 1. Comparison of different DC transmission topologies 

Topology advantages disadvantages 

Point-to-
point [5] 

1.Simplified 
protection 
configuration; 
2.engineering 
application.  

1.More dc cables and sea 
area. 

Radial [3] 

1.save resource 
of dc cables and 
sea area; 
2.engineering 
application. 

1.large occupation area 
and high cost of offshore 
converter ; 
2.interacts with each WF. 

Radial+[5] 
1. save resource 
of dc cables and 
sea area. 

1.DC breaker 
configuration.  

Wind farm 
ring [6] 

1. offshore 
transmission 
flexibility. 

1.dc breaker 
configuration 
2.complicated protection 
configuration; 
3. large occupation area 
and high cost of offshore 
converter. 

Substation 
ring [6] 

1. receiving-end 
grid flexibility. 

1.dc breaker 
configuration; 
2.complicated protection 
configuration. 

2.2 DC converter topology 

In actual projects and existing literatures, MMC is the 
most conventional structure for offshore converter[5][7]. 
It has been applied in offshore wind farms engineering. 
Similar to MMC, other high voltage and large power 
AC-DC converters, AAC[5] and LCC[8], are also 
proposed. But offshore LCC cannot operate in islanded, 
the wind farms cannot be charged by it. AAC has better 
dc fault blocking ability compared to MMC with half 
bridge submodule. But the control strategy is relatively 
complex. A DC-AC topology with series capacitor-
clamped module shown in Fig. 2(d) is proposed for 
offshore wind farms[9]. It achieves the minimal 
switching loss and maximum efficiency. However, the 
unused module topology brings the challenge for its 
application. Three DC-DC topologies are shown in Fig. 
2 (a)-(c). Medium-voltage dc system shown in Fig. 2 (a) 
can eliminate the low-frequency heavy and large step-
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up transformers[10]. The topology shown in Fig. 2(b) 
achieves high system efficiency[10-13]. The modular 
impedance source shown in Fig. 2(c) has better fault-
tolerant ability.  
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Figure 2: DC-DC converter topologies 

Table 2. Comparison of different DC transmission topologies 

Topology advantages disadvantages 
MMC + half 
bridge SM [5] 

1. engineering 
application 

1. dc fault-tolerant 
ability 

AAC [5] 1.dc fault 
blocking ability 

1. high system loss  
2, complex control 
strategies 

LCC [8] 1.lower 
investment 

1. cannot operate 
in isolated mode  

Media-voltage 
DAB converter 
[9] 

1.eliminate low-
frequency and 
step-up 
transformer 
2.supress 
voltage 
conversion 
stages 

1. more 
construction cost 
2.complex control 
strategies 

DC-DC converter 
[10-13] 

1. high system 
efficiency 

1. more 
construction cost 
2.complex control 
strategies 

modular 
impedance source 
DC-DC converter 
[14] 

1.fault-tolerant 
ability 
2. lower cable 
costs 

1. more 
construction cost 
2.complex control 
strategies 
3.power quality 

capacitor-
clamped  module 
DC-DC converter 
[15] 

1.better output 
voltage 
2.high voltage 
gain 

1. more 
construction cost 
2.complex control 
strategies 
3.higher 
investment 

3 Control methods 

3.1. Fault ride through strategy 

DC bus fault and AC grid fault are common faults that 
converters should deal with for VSC-HVDC 
transmission offshore wind farms. Based on DC bus 
fault, [16] analyzed the influence of the wind power 
plant control methods on the MMC-HVDC system 
based on the detailed cable model. DC bus fault is a 
critical failure, thus, the additional equipment or control 
method is necessary for DC fault ride through. In 
addition to the dc bus fault blocking converter structure 
(for example AAC[5]), chopper resistor is a common 
way to handle the dc fault for traditional offshore 
converter. Instead of the chopper resistor, a flywheel 
energy storage system is designed in[17]. Fast wind 
power plant control method can also reduce the 
influence of dc bus fault[18].  

For the AC grid fault, [19] introduced the fault ride 
through implementation, while analyzing the AC grid 
characteristics and fault power recovery rate. A nine 
switch converter is designed for ac grid fault ride 
through[20]. A new configuration of U-VSC-HVDC 
onshore converter structure is proposed in [21]. In 
addition to the new configurations, reactive current 
prioritizing method is also discussed to improve the 
transient stability and response during ac grid fault[22]. 
Meanwhile, a frequency droop control strategy is 
introduced for ac grid fault ride through by power 
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reallocation[23]. A fault current injection method is also 
introduced to enhance the overcurrent protection[3]. 
The advantage and disadvantages of these methods are 
shown in Table III.  

3.2. Droop control and power sharing for multi-
terminal HVDC 

In section 2.1, a series of DC transmission topologies 
are introduced. For solving the control issue of multi-
terminal ends in offshore windfarms, [24] forcused on 
the stability of MTDC and provided more 
interconnections for power grids and other forms of 
energy. Based on the stability of VSC-HVDC in 
windfarms, [25] investigated the stability consequences 
of offshore wind power into the existing Northwest 
European transmission system. In [26], a flexible DC 
transmission control method for offshore windfarms is 
introduced. It utilized DC voltage droop control for 
inverters and kept the dc voltage statble under some 
failure conditions. About droop control in VSC-HVDC 
for offshore windfarms, [27] also provided a droop 
control method to guarantee a safe operation while 
keeping the optimal operation of the DC grid. 
Compared to the droop control method proposed in [26] 
[27], [28] proposed a droop control strategy in terms of 
losses and reduced the system investments. 

For the multiterminal-HVDC network in offshore 
windfarms, power sharing is also a key probelm. 
Reference [29] proposed a supervisory control method 
for multiterminal-HVDC offshore windfarms systems. It 
designed the sharing of the active power generated from 
offshore windfarms among onshore AC grids under 
normal operation conditions. Reference [30] designed a 
mixed-integer linear program for day-ahead scheduling 
problem with linearised AC optimal power flow and 
multiterminal-HVDC system models. For solving the 
power sahring based on fault conditions, [31] provides a 
power redistribution strategy to achieve a better 
frequency performance of the onshore AC grids. 

3.2. Special issues 

To analyze the offshore windfarms system more 
accurate, the mathematical model is a key problem. A 
simplified model of HVDC transmission system 
connecting offshore windfarms to AC grid is proposed 
in [32]. Based on a multiterminal-HVDC system, [33] 
uses small-signal analysis model to investigate the 
influence of control parameters and DC breakers. 

For improving the HVDC system control 
performance, [34] introduces a system frequence 
regulation strategy based on a ancillary frequence 
controller in onshore converter without additional 
investments. Reference [35] utilizes the arm energy 
control strategy to achieve a better performance. 

4 Conclusions and future work 
The features of the offshore wind farms have made it 
an attractive research point for energy production and 

transmission. The demand to conform established rules 
has led to the development of VSC-HVDC topologies 
and control methods. This work presents a 
comprehensive review of the dc transmission topology, 
dc converter topology and fault ride through strategies 
for offshore wind farms. This review is important for 
understanding the operation of VSC-HVDC in offshore 
wind farms. In the future work, some operation 
performance and implementational methods in actual 
projects will be introduced and discussed. 
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