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Abstract. Satellite remote sensing aerosol monitoring products are readily available but limited 
to regional and global scales due to low spatial resolutions making them unsuitable for city-
level monitoring. Freely available satellite images such as Sentinel -2 at relatively high spatial 
(10m) and temporal (5 days) resolutions offer the chance to map aerosol distribution at local 
scales. In the first stage of this study, we retrieve Aerosol Optical Depth (AOD) from Sentinel -
2 imagery for the Munich region and assess the accuracy against ground AOD measurements 
obtained from two Aerosol Robotic Network (AERONET) stations. Sen2Cor, iCOR and MAJA 
algorithms which retrieve AOD using Look-up-Tables (LUT) pre-calculated using radiative 
transfer (RT) equations and SARA algorithm that applies RT equations directly to satellite 
images were used in the study. Sen2Cor, iCOR and MAJA retrieved AOD at 550nm show 
strong consistency with AERONET measurements with average correlation coefficients of 
0.91, 0.89 and 0.73 respectively. However, MAJA algorithm gives better and detailed 
variations of AOD at 10m spatial resolution which is suitable for identifying varying aerosol 
conditions over urban environments at a local scale. In the second stage, we performed multiple 
linear regression to estimate surface Particulate Matter (PM2.5) concentrations using the satellite 
retrieved AOD and meteorological data as independent variables and ground-measured PM2.5 
data as the dependent variable. The predicted PM2.5 concentrations exhibited agreement with 
ground measurements, with an overall coefficient (R2) of 0.59.

INTRODUCTION 

The study of aerosol concentrations in the atmosphere 
is essential due to the role they play in Earth's climate. 
The aerosols which could be either natural or 
anthropogenic absorb or scatter sunlight with an impact 
on the Earth's energy budget. Subtypes of atmospheric 
particles, the particulate matter (PM), are under criticism 
for their adverse effects on human health. Health effects 
include damage to respiratory and cardiovascular systems 
with PM2.5 posing higher risks owing to their smaller size. 
The risk is higher in urban regions where an estimated 
55% of the World's population live [1] which is as a 
result of higher anthropogenic aerosols emissions from 
transport, industries, power plants and household sources. 

Satellite remote sensing has been used to determine 
the aerosol concentration in the atmosphere based on the 
inversion of radiative transfer (RT) equations which 
model the scattering and absorption of solar radiation by 
aerosols, gas and water molecules in the atmosphere. The 

retrieval of columnar aerosol optical depth/thickness 
(AOD/AOT) forms a crucial step in the atmospheric 
correction of satellite images to generate surface 
reflectance products. By using the top-of-atmosphere 
(TOA) reflectance received by the satellite sensors and 
known surface reflectances/ bottom-of-atmosphere 
(BOA), the optical thickness of the atmosphere can be 
determined. The RT equations generate Look-up-Tables 
(LUT) which model the relationship between TOA 
reflectances and AOD in the required electromagnetic 
spectrum range. TOA reflectances follow the RT 
equation as expressed in Equation 1.  
 

               (    )     (    )      
(                 ) (1) 

Where      is the TOA reflectance,       is the 
atmospheric reflectance,       is the surface reflectance,  
        is the hemispheric albedo of the atmosphere, 
    (    ) and     (    ) are transmissions of the 
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atmosphere for sun      and satellite      zenith distances 
respectively. 
 

AOD is then obtained by subtracting Rayleigh 
scattering and gaseous absorption influences from the 
total optical thickness of the atmosphere as shown in 
Equation 2. 
 
    ( )    ( )       ( )       ( )   (2) 

Where   is the optical thickness of the atmosphere at 
wavelength   ,      ( ) the AOD,     ( )  the optical 
thickness of gaseous absorbers and     ( ) the optical 
thickness of Rayleigh Scattering. 
 

One of the algorithms used to estimate AOD is the 
Dark Object Subtraction (DOS) or Dark Target (DT) 
method which relies on the presence of dark pixels in an 
image. For these dark pixels of zero or minimal surface 
reflectance, TOA reflectances received are a result of 
atmospheric reflectances           . The estimated 
atmospheric reflectance is subtracted from the entire 
image scene to calculate the surface reflectance and used 
in RT models to retrieve the AOD. The assumption of 
this method is that dark pixels of known reflectances are 
found in an image scene and that the atmosphere is 
spatially uniform over the image.  

The second approach is the multispectral method 
which relies on the known constant spectral properties of 
dark dense vegetation (DDV) in the electromagnetic 
spectrum [2,3]. It uses the empirical relationships 
between surface reflectances in the blue and red bands 
with the SWIR band                   and 
                 . This is based on the spectral 
properties of healthy vegetation where chlorophyll 
strongly absorbs light at blue and red bands and the 
moisture content absorption peaks in the SWIR band. The 
DDV algorithm has been used extensively to retrieve 
AOD over land surfaces with high precision from images 
acquired by Moderate Resolution Imaging Spectrometer 
(MODIS) on board Terra and Aqua satellites. The 
assumptions of this method are that pixels with low BOA 
reflectances in the visible spectrum are present such as 
dark vegetation or water bodies and that the ratio between 
BOA reflectances at different wavelengths is constant [4]. 
The application of this approach for AOD retrievals is 
limited over brighter surfaces and arid regions which 
have sparse or no vegetation.  This approach is also 
limited by locational, seasonal and angular dependence of 
visible and SWIR bands surface ratios [5]. Deep Blue 
(DB) algorithm is used for AOD retrievals over brighter 
surfaces especially arid and semi-arid regions where there 
are no dark pixels for the DDV method. In MODIS, this 
algorithm uses the 412nm band also referred to as the 
―deep blue‖ band in which aerosols appear bright and 
surfaces darker unlike in visible bands where the contrast 
between aerosols and the surfaces is not easily 
distinguishable.  

AOD can also be retrieved using the multi-temporal 
method which is based on the assumption that land 
surfaces change slowly over time and remain relatively 

constant especially with short satellite revisit times and a 
constant viewing angles [5]. The changes in reflectances 
observed from one image to another of the same scene 
can thus be attributed to the atmospheric aerosols which 
vary rapidly over time. Based on these assumptions, the 
approach is less accurate for satellites with longer revisit 
times and when vegetation in a scene changes rapidly in 
between acquisitions. The method’s sensitivity to 
aerosols variation also decreases and the error increases 
with increasing surfaces reflectances [6].  

Readily available satellite AOD products like the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) product MOD04 at 550nm provides a high 
temporal resolution for daily based monitoring at 3km 
(MOD04_3K) and 10km (MOD04_L2) spatial 
resolutions suited for global and regional scales but 
incapable of detailed urban air quality monitoring [7]. 
Both DT and DB algorithms are used for AOD retrieval 
and they both rely on darker surfaces to estimate the 
atmosphere's contribution to TOA radiances but differ in 
the way they account for surface reflectance. The DT 
algorithm uses dark surfaces in two visible channels 
470nm and 660nm and the approximate transparency of 
the atmosphere at 2120nm to obtain an accurate 
estimation of the atmospheric scattering which works best 
over dark vegetation and water bodies. The DB algorithm 
retrieves AOD using dark surfaces in two blue channels 
412nm and 470nm and little absorption by dust in a red 
channel 670nm and addresses the issue of AOD retrievals 
over bright land surfaces [8]. 

European Space Agency’s (ESA) Copernicus 
programme provides aerosol products from their 
Sentinel-3 and Sentinel-5P satellite missions. The 
Sentinel-3 AOD product at 550nm, available since 
October 2018, has a 300m spatial resolution, the Aerosol 
Index (AI) from Sentinel-5P a spatial resolution of 7 km 
x 3.5 km. The Sentinel-3 SYN AOD is one of the synergy 
products derived from the Ocean and Land Color 
Instrument (OLCI) and Sea and the Land Surface 
Temperature Radiometer (SLSTR) sensors.  The Sentinel 
-3 SYN algorithm used to estimate aerosols and surface 
reflectances uses a synergistic approach to retrieve AOD 
by combining DOS and multi-view-angle (MVA) 
methods [9]. The DOS method is used for single view 
AOD retrievals using a correlation of BOA reflectances 
from known surfaces of dark vegetation and water bodies. 
Dark pixels are identified by calculating the Normalized 
Difference Vegetation Index (NDVI) using reflectances 
in the infrared band (870nm) and the red band (670) 
Equation 3. 
 
                          
 

The multi-view-angle method assumes a constant 
angular variation of BOA reflectances across a 
wavelength which is as a result of Bidirectional 
Reflectance Distribution Function (BRDF). For the 
SLSTR sensor, the ratio of BOA reflectances at nadir and 
off-nadir viewing angles is well correlated between 
bands. The advantage of this approach over the DOS is 
that it does not require prior information of BOA 
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atmosphere for sun      and satellite      zenith distances 
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The multi-view-angle method assumes a constant 
angular variation of BOA reflectances across a 
wavelength which is as a result of Bidirectional 
Reflectance Distribution Function (BRDF). For the 
SLSTR sensor, the ratio of BOA reflectances at nadir and 
off-nadir viewing angles is well correlated between 
bands. The advantage of this approach over the DOS is 
that it does not require prior information of BOA 

 

reflectances. The AOD retrieved using the MVA 
technique exhibits high consistency with ground-
measured AERONET AOD with a correlation coefficient 
of 0.87 for mixed land surfaces. 

On the ground, Aerosol Robotic Network 
(AERONET) stations form a global network of sun 
photometers measuring AOD and aerosol properties more 
accurately and are used for validation and calibration of 
satellite AOD retrievals. However, these stations are 
sparsely distributed globally and hence the need for 
satellite retrieved AOD for better coverage.  

Compared to ground-based aerosol monitoring 
sensors, satellite remote sensing has inherent advantages 
since the spatial coverage is nearly continuous over large 
extents and provides high spatial resolution data. 
However, the sparsely distributed ground-based sensors 
like AERONET provide the most accurate AOD 
measurements and are thus considered as ground truth. 
The goal of this study is to assess the suitability of 
Sentinel-2 images to retrieve AOD at a higher spatial 
resolution capable of mapping spatial and temporal 
variability of aerosols at city-levels.  Different AOD 
retrieval algorithms were used and evaluated for accuracy 
against AERONET data. 
 

METHODOLOGY 

 Study Areas 
The first study area is the Munich region which has 

mixed urban and rural land surfaces. The study area has 
three AERONET stations, two of which are operational. 
The AOD measurements from the ground stations are 
crucial in assessing the performance of AOD retrieval 
algorithms. The locations of the two stations, Munich 
University (521m asl) in the middle of the city and 
HohenpeissenbergDWD (956m asl) in a rural region of 
which the land cover is predominantly vegetated, offer 
the opportunity to assess the suitability of the AOD 
retrieval algorithms in both land use cases.  

The city region lies on elevated plains at an average 
elevation of 520m above sea level, rising gradually 
towards the Bavarian Alps located approximately 50km 
in the south.  The estimated population of the city is 1.45 
million inhabitants. The city region has major motorways 
with intense traffic and light industries are spread out 
across the city. 

The Stuttgart city region was used as the second study 
area for estimating PM2.5 from the retrieved AOD. In 
Stuttgart, air pollution levels have in the past exceeded 
the thresholds set by WHO which can be attributed to the 
high traffic and industrial activities. Geographically, the 
city is located in a valley basin surrounded by mountains 
which inhibit airflow further worsening the air quality 
situation. 

 
 

 
 
Figure 1: Sentinel -2 satellite image of the Munich city region 
study area, showing the region boundary and the three 
AERONET stations 

 Data 
To evaluate different AOD retrieval methods, we used 

Sentinel -2A and 2B images of the study region acquired 
between January and October 2018. In total 43 clear 
images which had 30% cloud cover or less were selected 
for the study. Corresponding AERONET cloud-screened 
and quality controlled Level 1.5 AOD data from two 
stations in the study area Munich University and 
HohenpeissenbergDWD was used for validating the 
satellite retrieved AOD [10]. Data from a third 
AERONET station, Munich Maisach, was not available 
for the study period. Since all the AOD retrievals are 
calculated at 550nm wavelength, AERONET AOD at 
500nm was interpolated using the Angstrom power-law 
Equation 4. Aerosol properties, single scattering albedo 
(SSA) and asymmetric factor from the stations, were 
linearly interpolated to 550nm wavelength and used to 
retrieve AOD in section 0.  

                  (
   
   )

  
    (4) 

Where α is the Angstrom exponent 440-870nm. 
 

In the second stage of the study, PM2.5 estimation in 
Stuttgart city, we used PM10 and PM2.5 measurements 
from Luftdaten low-cost sensors network, a citizen 
science project by OK Lab Stuttgart. This dense network 
with approximately 250 sensors offers relative air quality 
information but at lower accuracies compared to air 
monitoring stations operated by the state regulatory 
agency. Meteorological parameters, temperature, 
humidity, atmospheric pressure, wind direction and speed 
are obtained from OpenWeatherMap service which has 
23 stations in the area. In total, PM and weather data from 
six days is aggregated to hourly averages for use in AOD- 
PM2.5 analysis.  
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Figure 2: A map of Stuttgart city showing the distribution of 
Luftdaten PM sensors and weather stations. 

 

 AOD Retrieval Algorithms 

 Sen2Cor  
ESA's Copernicus programme provides Sentinel -2 

images either as TOA Level-1C or BOA Level-2A 
products. For the Level-1C products, Sen2Cor processor 
is freely available for users to perform single-date 
atmospheric corrections. AOD, water vapour and scene 
classification bands are created as by-products of the 
correction process. The by-products are also available 
readily in Level-2A products. The tool is available either 
as a standalone or a plugin to ESA’s Sentinel Application 
Platform (SNAP) software. AOD is derived at 550nm 
using the DDV algorithm based on the SWIR (band 12) 
and the visible bands red (band 4) and blue (band 2). It 
requires the presence of dark vegetation, dark soils or 
water surfaces in an image scene. In the absence of dark 
pixels, atmospheric correction is performed with a 
constant AOD  specified by a start visibility value at 
40km corresponding to an AOD of 0.2 at sea level  [11–
13]. This was not an issue as our study region contains 
densely vegetated areas and water bodies as shown in 
Figure 1. The Level-1C images were processed to Level-
2A at 20m resolution using SNAP and a factor of 0.001 
applied to the aerosol band digital numbers to derive the 
AOD values. 
 

 MACCS-ATCOR Joint Algorithm (MAJA) 

MAJA is an atmospheric correction algorithm 
combining modules from Multi-Temporal Atmospheric 
Correction and Cloud Screening (MACCS) developed by 
CNES and CESBIO and Atmospheric Correction 
(ATCOR) by DLR [5]. The algorithm, applicable to 
Landsat -8, Sentinel -2, VENµS and Formosat-2 satellite 

images, employs different techniques to estimate aerosols 
for the atmospheric correction process. Using the multi-
temporal method, for two consecutive cloud-free satellite 
observations at dates   and   , the algorithm searches 
for AODs of both dates that minimize the squared 
differences between the corrected surface reflectances 
Equation 7.  

The setback to this method is that the accuracy is 
reduced when the AOD is nearly similar for both dates 
making it impossible to retrieve an absolute AOD value. 
To improve the AOD retrievals in this scenario, the 
present image is compared to a reference image from an 
older iteration of the algorithm in Equation 8.   A cost 
function Equation 5 which is a sum of Equations 7 and 8 
errors, and a Levenberg–Marquardt non-linear least mean 
squares (LMS) algorithm searches for the AOD of   and 
   that minimizes the error. 
 
          ∑      

 
               (5) 

 
Where: 
  
     

   (  
          

      )    (6) 
 
 
           (    ( )  )        (    (  )   )  (7) 
 
 
           (    ( )  )   (     (  ))   (8) 

Where       is the atmospheric correction function 
linking TOA reflectances to their corresponding BOA 
reflectances for a given AOD   and aerosol model, 
     (  ) is BOA reflectance from the reference image. 
The reflectances used in the cost function are from the 
blue band range which has a lower temporal variation.   

  
and   

  weight the contribution of       and      where 
  

  is set to one and   
  is proportional to the mean value 

of the difference of TOA reflectances from dates   and 
  . 

The second technique used is the multispectral 
method which is based on the DDV approach but relying 
on blue-red bands relationships instead of the visible 
/SWIR relationships. This adapted method seeks to 
address issues affecting the DDV approach which are 
locational, seasonal and angular dependences of 
visible/SWIR surface ratio. Due to the errors observed 
when SWIR band is used, the algorithm uses a more 
robust blue-red relationship which is established for each 
of the satellite sensors applicable to diverse locations and 
seasons Equation 9.  
 
      

             
         (9) 

Where:   is the blue-red coefficient. For Sentinel -2 
      , B1 is used as the blue band and B4 is the red 
band. 
 

Since only one equation is used, retrieving both the 
AOD and the aerosol model is not possible and a constant 
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Where:   is the blue-red coefficient. For Sentinel -2 
      , B1 is used as the blue band and B4 is the red 
band. 
 

Since only one equation is used, retrieving both the 
AOD and the aerosol model is not possible and a constant 

 

aerosol model for any given location has to be used. This 
assumption of a constant aerosol model introduces 
atmospheric correction errors. MAJA’s multispectral 
method uses a cost function in Equation 10 by summing 
up the squares of differences between blue surface 
reflectances after atmospheric correction and the blue 
surface reflectances predicted from the red band.  
 
          ∑                          (10) 
 
Where: 
 
             (        ( )  )  (         (       ( )  )    ) (11) 
 

Where the weight   is equal to the NDVI to account 
for better correlation of the blue-red relationship for high 
NDVI,   and   are gains linking the blue and red BOA 
reflectances for a particular satellite sensor. 
 

The algorithm uses a third technique which combines 
the multi-temporal and multispectral algorithms and 
relies on minimizing the cost function using the LMS 
algorithm. The cost function combines the multitemporal 
and multispectral Equations  6 and 11 respectively shown 
in Equation 12. 
 
        ∑             ∑                                      
      (12) 

Where     and     are weighting coefficients for the 
contribution of the multitemporal and multispectral 
methods.     takes into account the time interval 
between two consecutive images, whose increase leads to 
decreased AOD retrieval accuracy due to surfaces 
changing over time.  

For the three approaches, two constraints, a lower and 
an upper boundary, are applied to limit errors in AOD 
estimates. The lower boundary being that AOD cannot be 
negative and the upper boundary estimated using the 
Dark Object Subtraction (DOS) method. For AOD 
retrieval, clear pixels with the minimum reflectance in the 
blue band are selected and checked in previous images to 
avoid undetected cloud shadows. The two bounds 
obtained are then added to the cost function. To address 
the need for constant viewing angles, directional 
correction is performed in the multi-temporal approach to 
enable merging a time series of images acquired from 
different orbits which sometimes is the case with 
overlapping Sentinel-2 images. This also helps in 
densifying the time-series. Finally, interpolation of 
missing AOD retrievals due to masked pixels and 
smoothing of the image is done to deliver the final 
output. 

The publicly available MAJA code (V3.3)  [6] was 
run in a Linux environment. Earlier versions of MAJA 
used a continental aerosol model to generate LUTs for 
atmospheric correction, however starting with version 
3.1, the algorithm uses CAMS aerosol products to model 
the aerosol type. Starting with version 3.2, CAMS data is 
not only used to estimate the aerosol type but also 
optionally as the default value for AOD estimates. The 

AOD is used with low weight in the cost function which 
leads to greater influence where the algorithm does not 
find sufficient suitable pixels for estimation and has no 
influence in case of good AOD estimates. To run MAJA 
with CAMS option, we downloaded CAMS data from 
January to October. SRTM DTM and water body datasets 
for the study area were prepared using the pre-processing 
scripts provided. The output of MAJA algorithm is in 
MACCS format and contains the aerosols band in the 
atmospheric and biophysical (ATB) parameters file as 
band number 2 at 10m spatial resolution. The final post-
processing step to obtain the AOD is multiplying by the 
quantification value 0.005. 
 

 iCOR   
iCOR is an atmospheric correction algorithm for both 

land and water developed by Vlaams Instituut voor 
Technologisch Onderzoek (VITO) Remote Sensing Unit 
provided freely as a SNAP plugin for Landsat-8 and 
Sentinel-2 data [14]. AOD is retrieved using the method 
by [15] which is then used as an input to the 
MODTRAN5 radiative transfer equation used for 
correcting atmospheric effects. The first step in correcting 
Sentinel-2 images is water and cloud pixels masking 
performed using a single band (NIR B8) thresholding for 
water and multiple threshold levels for the cloud pixels. 
The algorithm also takes advantage of the present SWIR-
Cirrus band (B10) to improve detection of cirrus clouds. 
The TOA scene is then partitioned into 15 x 15km tiles 
which are assumed to include high spectral variation and 
atmospherically homogeneous. 

In each of the tiles, the lowest radiance value for each 
band is selected as the dark target spectrum and the 
approximate path radiance retrieved using pre-calculated 
MODTRAN5 look-up-table (LUT). The AOD value 
leading to the path radiance closest to the dark spectrum 
is considered the upper boundary for the specific tile. 
Five reference pixels with high spectral contrast are 
selected based on their NDVI values from TOA 
reflectances and used in the next step to refine the 
estimated AOD through an endmember inversion 
technique. The technique models surface reflectance of 
the five pixels as a linear combination of two predefined 
pure green vegetation and bare soil spectra that act as 
artificial endmembers Equation 13.  
 
                           (13) 

Where:   ,     ,       are surface reflectances of 
reference pixels, predefined vegetation and soil spectra, 
Cv and    are independent coefficients weighting 
vegetation and soil proportions    and Cs are free in the 
inversion resulting in 11 parameters as degrees of 
freedom; two parameters for each of the five pixels and 
AOD. The inversion is performed through the 
minimisation of the Merit function δ2 Equation 14 [16]. 
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Where:      is simulated TOA radiance from 
MODTRAN5 LUT,        is measured TOA radiance,     
is centre wavelength of the ii-th band and      is 
weighting factor (2.0 for pure vegetation, 1.5 for mixed 
and 1.0 for pure soil pixels) 

The AOD value leading to the minimum δ2 value in 
the inversion is selected for the cell.  The last steps in the 
retrieval process are an interpolation of the missing pixels 
due to cloud masking and smoothing of the mosaiced 
tiles. The iCOR algorithm avoids the need for dark 
targets making it less restrictive than the DDV approach. 
Atmospheric correction was performed on Sentinel -2 
L1C images and the AOD intermediate band at 60m 
spatial resolution exported for analysis.  
 

 Simplified high-resolution MODIS Aerosol 
Retrieval Algorithm (SARA)   

The Simplified high-resolution MODIS Aerosol 
Retrieval Algorithm (SARA) [17] has been used to 
retrieve AOD from MODIS images at 500m spatial 
resolution. The inputs of the algorithm are the TOA and 
BOA reflectances, sun and view angles, and aerosol 
properties obtained from AERONET ground stations. 
The algorithm is considered simplified as it does not 
require LUTs to retrieve AOD. While the other three 
algorithms depend on LUTs pre-computed using RT 
equations to model the relationship between TOA 
reflectances and AOD, in SARA, the RT equation is 
applied directly together with aerosol properties derived 
from AERONET stations. The algorithm assumes 
Lambertian surfaces, single scattering approximation, and 
that single scattering albedo and asymmetry factors are 
constant over a region at a particular time. 

Processing using this algorithm was implemented in 
Python to retrieve AOD at 550nm. From Sentinel-2 Level 
1C images, TOA reflectances for band 3 (560nm), sun 
and view azimuth and zenith angles were extracted as 
grids. BOA reflectances were obtained from band 3 of 
Level 2A images. The images were all resampled to 20m 
resolution and clipped to a smaller region of the study 
area for computational reasons. To mask out clouds, 
cloud shadows, water and snow pixels, the FMASK 
algorithm was used which offers better discrimination of 
non-clear pixels compared to the mask bands in Level 2A 
products [18,19].  SRTM DTM of the study region was 
obtained and resampled to 20m for calculations in the 
next steps. 

In SARA algorithm, the AOD    retrieval relies on 
aerosol reflectance in the absence of air molecules 
    (         ), cosine of solar    and view    zenith 
angles, single scattering albedo    and aerosol scattering 
phase function   (       ) as given in Equation 15. 
 
     

     
    (       )
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The aerosol scattering phase function gives the 
angular dependence of light scattered by aerosols and is 
calculated using Equation 16 [20]. 
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Where   is the asymmetry parameter and   is the 
scattering phase angle defined in Equation 17, a function 
of solar zenith angle   , view zenith angle    and relative 
azimuth angle          . 
 
        (                          )   (17) 

The aerosol reflectance     (         ) is calculated by 
subtracting the Rayleigh path reflectance 
    (         ) and the surface function from the satellite 
measured TOA reflectances as shown in Equation 18 
[21]. 
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Where   (         ) is the BOA reflectance,  ( ) is the 
atmospheric backscattering,  (  ) and  (  ) are the 
transmissions of the atmosphere on the sun-surface and 
surface-sensor paths respectively. TOA     (         ) and 
BOA   (         ) reflectances were obtained directly from 
Sentinel-2 Level 1C and Level 2A products respectively. 
Rayleigh path reflectance     (         )  calculation is 
based on the Rayleigh optical depth and the sun and view 
zenith angles, as expressed in Equation 21. 
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Where    is the Rayleigh optical depth as expressed 

by Equation 23 in the visible range spectrum [22].  
 
  ( )   

  
  
             (23)

The ambient pressure    is calculated with respect to 
surface elevation using the Barometric formula in 
Equation 24 [23]. 
 
      

   
         (24) 

Where    is the standard atmospheric pressure at sea 
level,   is the Molar mass of dry air,    the Earth-
Surface gravitational acceleration,   the universal gas 
constant,   the standard temperature and   the elevation 
obtained from SRTM DTM. 
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surface elevation using the Barometric formula in 
Equation 24 [23]. 
 
      

   
         (24) 

Where    is the standard atmospheric pressure at sea 
level,   is the Molar mass of dry air,    the Earth-
Surface gravitational acceleration,   the universal gas 
constant,   the standard temperature and   the elevation 
obtained from SRTM DTM. 

 

 
   is the Rayleigh single-scattering albedo approximated 
to 1 and   (         ) Is the Rayleigh scattering phase 
function  [24]. 
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Thus, based on Equation 15, all required parameters 
for AOD retrieval can be estimated with only three 
unknowns, single scattering albedo   , asymmetry 
parameter   and the AOD    itself can be retrieved as in 
shown in Equation 26 [17].  
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Single scattering albedo    and asymmetry parameter 
  were obtained from the two AERONET stations. Using 
the values measured in 441nm and 676nm wavelengths, 
   and   which were linearly interpolated to 550nm. The 
equation was solved using Scipy’s fsolve module in 
Python. 
 

 AOD-PM2.5 estimation 
Due to the full coverage of satellite images, retrieved 

AOD can be utilized to estimate PM2.5 concentrations at 
full spatial extents based on the correlation between AOD 
and PM2.5. The relationship between the columnar AOD 
and the surface level PM2.5 concentration is heavily 
influenced by meteorological conditions. In previous 
studies, temperatures have been observed to have a 
negative correlation with PM concentrations while 
relative humidity shows positive correlations [25]. 
Relative humidity promotes the deposition of PM as 
moisture particles adhere to PM leading to higher 
concentrations. Temperature and atmospheric pressure 
influence the transport and accumulation of PM by 
affecting convection while winds lead to PM dispersion 
[26,27]. 

 In this study, a multiple linear regression model used 
to estimate PM2.5 with Sentinel -3 SYN AOD and 
meteorological data. The meteorological data was fused 
with PM2.5 measurements using spatial joins on the 
closest weather station and the AOD pixel values 
extracted for each PM sensor. The null values due to 
missing pixels in AOD images and missing parameters 
from the weather stations recordings were deleted from 
the dataset. Erroneous PM2.5 recordings attributed to 
faulty sensors and outliers were also excluded from the 
regression analysis. 
 

RESULT ANALYSIS 

 Statistical Analysis 
Evaluation of the satellite retrieved AODs compared with AOD 
measured by Munich University and HohenpeissenbergDWD 

AERONET stations was performed using three statistical 
indicators. The correlation coefficient (R) was used as a 

measure of consistency between AOD retrieved using the 
different algorithms and AERONET AOD at 550nm.  The root-
mean-square error (RMSE) was used as a measure of the AOD 
differences and the mean absolute error (MAE) as a measure of 

the error magnitude  

Table 1. Since aerosols exhibit high temporal 
variation, statistical analysis was performed on AODs 
within ±15 minutes between satellite images acquisitions 
and the AERONET measurements.  Where AERONET 
data was missing (date 27.04.2018 for Munich University 
station and 24.09.2019 for HohenpeissenbergDWD 
station), the dates were also excluded from the analysis.  

From the results in  

Table 1, AOD retrieved using the Sen2Cor algorithm 
shows better consistency with the AERONET AOD and 
the lowest error magnitudes for both stations. The study 
area has sufficient dark pixels from the water bodies and 
dense vegetation which is required for the DDV 
multispectral AOD retrieval approach. For the Munich 
University station, satellite retrieved AOD for the three 
algorithms shows strong agreement with the AERONET 
AOD. However, the consistency is reduced for 
HohenpeissenbergDWD station with MAJA algorithm 
showing significantly lower agreement levels. 
HohenpeissenbergDWD station is located in an area 
predominantly containing vegetation, which means the 
land surface reflectance (LSR) varies greatly over time 
compared to the urban region where Munich University 
station is located. This high variance in LSR over time 
results to less accurate AOD retrievals and hence the 
lower agreement levels when compared to AERONET 
AOD.  Figure 3 shows the scatterplots and regression 
slopes of the satellite AOD retrievals and AERONET 
AOD over the two stations. 
 

 
Table 1: Comparison between Sentinel -2 satellite retrieved 

AOD and AERONET AOD at 550nm. 

Munich University Station 

 R RMSE MAE N Regression Line 

Sen2Cor 0.96 0.004 0.049 27 Y = 0.548x+ 
0.035 

iCOR 0.92 0.005 0.056 24 Y = 1.055x - 
0.051 

MAJA 0.81 0.006 0.054 27 Y = 0.953x+ 
0.003 

 
HohenpeissenbergDWD Station 

 R RMSE MAE N Regression Line 

Sen2Cor 0.86 0.003 0.035 31 Y = 0.529x+ 
0.053 

iCOR 0.86 0.004 0.056 30 Y = 0.980x - 
0.038 
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MAJA 0.64 0.007 0.058 32 Y = 0.525x+ 
0.080 

 

 
 

 

 
 
Figure 3: Scatterplots and regression lines between Sentinel -2 
satellite retrieved AOD and AERONET AOD from Munich 
University and HohenpeissenbergDWD stations. 

 

 Spatial and Temporal Variability 
The satellite retrieved AODs were further compared 

against the AERONET AOD over time to study the 
temporal trends as shown in Figure 4. In both locations, 
peaks in AOD levels are clearly distinctive for example in 
June and August. However, while the AOD retrievals for 
Munich University station display a smooth trend that 
correlates well with the AERONET AOD, in 
HohenpeissenbergDWD station, the retrievals display 
erratic behaviour and larger deviations from the 
AERONET stations due to the unstable surface 
reflectances. 
 

 
Figure 4: Timeseries charts of Sentinel -2 AOD retrievals using 
Sen2Cor, iCOR and MAJA algorithms against AERONET 
AOD 

Despite Sen2Cor and iCOR algorithm achieving a 
high agreement with AEORONET AOD, the output maps 
generalize AOD distributions failing to show spatial 
variations especially in smaller regions such as the 
Munich City region Figure 5(a, b). On the other hand, 
AOD retrieved using MAJA algorithm, shows boundaries 
between slight variations in AOD providing better 
mapping in smaller regions.  
 
 

  
(a)                       (b) 

  
(c)       (d) 
 
Figure 5: Figures (a), (b) and (c) show maps of AOD retrieved 
from Sentinel -2 images using Sen2Cor, iCOR and MAJA 
algorithms respectively, while figure (d) shows the AOD map 
from Sentinel -3 SYN product. The images were acquired on 
26th October 2018, at 10:11 am for Sentinel -2 and 10:09 am for 
Sentinel -3. 
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generalize AOD distributions failing to show spatial 
variations especially in smaller regions such as the 
Munich City region Figure 5(a, b). On the other hand, 
AOD retrieved using MAJA algorithm, shows boundaries 
between slight variations in AOD providing better 
mapping in smaller regions.  
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Figure 5: Figures (a), (b) and (c) show maps of AOD retrieved 
from Sentinel -2 images using Sen2Cor, iCOR and MAJA 
algorithms respectively, while figure (d) shows the AOD map 
from Sentinel -3 SYN product. The images were acquired on 
26th October 2018, at 10:11 am for Sentinel -2 and 10:09 am for 
Sentinel -3. 
 

 

In Figure 5(c) higher AOD concentrations are visible 
in the northern part of the city, with gradual decrease 
towards the southern rural region as expected due to the 
concentration of anthropogenic activities in the urban 
region. Comparing the maps with the readily available 
Sentinel -3 SYN AOD product Figure 5(d), MAJA AOD 
map is the most similar in both AOD distribution and 
levels. Conversely, Sen2Cor and iCOR algorithms 
retrieve lower AOD values with no matching distribution 
patterns to the Sentinel -3 SYN AOD. iCOR retrieved 
AOD appears in rectangular patterns which is a result of 
subdivision into 15 x 15km tiles during the AOD retrieval 
phase and the mosaicking thereafter in the post-
processing step. The restriction of AOD boundaries per 
tile results to sharp boundaries between tiles as shown in 
Figure 5(b). 
 
 

 SARA Algorithm 
AOD retrieved by the algorithm had no correlation 

with the AERONET AOD data and thus was omitted 
from the statistical analysis. AOD retrieval shows high 
dependence on BOA reflectances. In the study area, 
brighter surfaces produced higher AOD values compared 
to darker areas. This results in an AOD map that highly 
correlates with the BOA reflectances. Visually inspecting 
the map in Figure 6, built-up areas and road surfaces have 
higher AOD values while darker areas with vegetation 
cover have lower values. The assumption that aerosol 
properties, single scattering albedo and asymmetry factor, 
are constant over a region is also not met in our study 
area.   

The aerosol properties obtained from the two 
AERONET stations, which are approximately 57km 
apart, differ in varying magnitudes over space and time. 
Aerosols distribution and properties vary considerably 
over space and time which limits the application of the 
algorithm in our study area. This is evident from 
measurements recorded by the two AERONET stations. 
 

 
Figure 6: SARA retrieved AOD for Sentinel -2 image acquired 
on 26th October 2018  

 AOD-PM2.5 estimation 
Sentinel -3 SYN AOD which is readily processed and 

shows a high agreement with AERONET AOD is ideal 
for rapid mapping of air quality. The pair of Sentinel-3 
satellites also have a high temporal resolution with a short 
revisit time of less than two days. As shown in  Figure 5 
(d) the AOD product also captures spatial variability of 
aerosols at 300m spatial resolution. We used multiple 
linear regression with this AOD and meteorological data 
to estimate PM2.5 for the Stuttgart City study area. Table 2 
shows the data, excluding outliers and null values, used 
for the regression analysis. 80% of the dataset was used 
to train the regression models while 20% was used to test 
predictions from the models. 
 
 
 
 

Table 2: Descriptive statistics of the dataset used in 
regression analysis. 

   
(C°)     

        
        

        
        
        
        
        
        

 
From the regression analysis, PM showed a positive 

correlation with AOD, relative humidity (RH), wind 
speed (WS) and atmospheric pressure (P) while 
temperature and the wind direction (WD) showed 
negative correlation as shown on Table 3. 
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Table 3: Regression Coefficients 

Independent Variables Regression 
Coefficients 

AOD 0.41335 
Temperature -0.1339 
Relative Humidity 0.033356 
Wind Speed 2.586447 
Wind Direction -0.02118 
Pressure 3.052675 

 
As expected, the columnar AOD has a significant 

positive correlation to the PM. The wind speed and 
direction play a significant role in the dispersion and 
concentration of PM. Due to the geographic location of 
our study area, where the city lies in a valley, airflow 
could be inhibited depending on the wind direction and 
speed. Wind speeds and direction are uniform spatially 
and only vary over time. Based on the elevation map of 
Stuttgart in Figure 7 (a), winds blowing from between 0 – 
90 degrees are bound to promote deposition of PM which 
is trapped in the lower altitude regions. As the wind 
direction increases, PM is dispersed away from the city 
region and hence the weak negative correlation.  

The atmospheric pressure, which is dependent on the 
elevation and ambient temperature, has a significant 
influence on the surface-level PM concentrations. In the 
study area, atmospheric pressure is uniform spatially and 
only varies with time due to temperature differences. The 
predicted PM2.5 concentrations exhibited agreement with 
ground measurements, with an overall coefficient (R2) of 
0.59. 
 
 

(a)

(b) 

Figure 7: (a) Elevation of Stuttgart City region derived from 
SRTM DEM and (b) A wind rose plot showing the normalized 
frequency of wind data used in the study.

Conclusions 

The study used different algorithms to retrieve AOD 
from Sentinel -2 images and evaluates their accuracies 
against AERONET measured AOD. While Sen2Cor and 
iCOR algorithms achieve better correlations with 
AERONET AOD for both stations, they fail to capture 
detailed spatial variations in AOD distribution. MAJA 
algorithm on the hand achieves lower correlations for 
both stations but shows detailed variations of AOD 
spatially. Though at a coarser spatial resolution of 300m 
and no data pixels due to masking out clouds, cloud 
shadows, snow and water bodies, Sentinel -3 SYN AOD 
product matches MAJA retrieved AOD and slight spatial 
variations in AOD values are visible. The algorithms also 
show the ability to identify temporal trends in AOD 
values similar to the ground measurements from 
AERONET stations.  BOA reflectances are significant in 
AOD retrieval with stable surfaces such as in built-up 
surfaces in the urban region showing better agreements 
with AERONET AOD while in rural regions where the 
vegetation changes rapidly over time, the retrieved AOD 
shows lesser agreement for the three algorithms.   

The DDV approach as used in Sen2Cor does not 
provide detailed spatial variation of AOD. Conversely, 
not relying on prior knowledge of BOA reflectances such 
as is the case with the implementation of the multispectral 
approach in MAJA and the multi-view-angle approach in 
Sentinel -3 SYN, gives a better spatial variation of AOD 
distribution. Sentinel -2 AOD retrievals show strong 
agreement with ground measured AOD and potential to 
better map aerosols in urban environments. In this study, 
MAJA algorithm produced the best detailed spatial 
variations at 10m spatial resolution. At 300m spatial 
resolution, Sentinel -3 SYN AOD also identifies 
variations at a local scale and could be used for aerosol 
monitoring in urban environments. 

Satellite retrieved AOD offers the ability to estimate 
surface level PM concentrations allowing full spatial 
extent mapping of air pollution. One of the limitations of 
using sun-synchronous satellites like Sentinel -3 is that 
they pass over a target area at the same local mean solar 
time, approximately 10:00 GMT over Stuttgart. This 
limits them from being used to estimate diurnal variations 
of air quality. The approach used in the study can be 
further improved to model diurnal, weekly and seasonal 
AOD, PM and meteorological factors relationships.  
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The atmospheric pressure, which is dependent on the 
elevation and ambient temperature, has a significant 
influence on the surface-level PM concentrations. In the 
study area, atmospheric pressure is uniform spatially and 
only varies with time due to temperature differences. The 
predicted PM2.5 concentrations exhibited agreement with 
ground measurements, with an overall coefficient (R2) of 
0.59. 
 
 

(a)

(b) 

Figure 7: (a) Elevation of Stuttgart City region derived from 
SRTM DEM and (b) A wind rose plot showing the normalized 
frequency of wind data used in the study.

Conclusions 

The study used different algorithms to retrieve AOD 
from Sentinel -2 images and evaluates their accuracies 
against AERONET measured AOD. While Sen2Cor and 
iCOR algorithms achieve better correlations with 
AERONET AOD for both stations, they fail to capture 
detailed spatial variations in AOD distribution. MAJA 
algorithm on the hand achieves lower correlations for 
both stations but shows detailed variations of AOD 
spatially. Though at a coarser spatial resolution of 300m 
and no data pixels due to masking out clouds, cloud 
shadows, snow and water bodies, Sentinel -3 SYN AOD 
product matches MAJA retrieved AOD and slight spatial 
variations in AOD values are visible. The algorithms also 
show the ability to identify temporal trends in AOD 
values similar to the ground measurements from 
AERONET stations.  BOA reflectances are significant in 
AOD retrieval with stable surfaces such as in built-up 
surfaces in the urban region showing better agreements 
with AERONET AOD while in rural regions where the 
vegetation changes rapidly over time, the retrieved AOD 
shows lesser agreement for the three algorithms.   

The DDV approach as used in Sen2Cor does not 
provide detailed spatial variation of AOD. Conversely, 
not relying on prior knowledge of BOA reflectances such 
as is the case with the implementation of the multispectral 
approach in MAJA and the multi-view-angle approach in 
Sentinel -3 SYN, gives a better spatial variation of AOD 
distribution. Sentinel -2 AOD retrievals show strong 
agreement with ground measured AOD and potential to 
better map aerosols in urban environments. In this study, 
MAJA algorithm produced the best detailed spatial 
variations at 10m spatial resolution. At 300m spatial 
resolution, Sentinel -3 SYN AOD also identifies 
variations at a local scale and could be used for aerosol 
monitoring in urban environments. 

Satellite retrieved AOD offers the ability to estimate 
surface level PM concentrations allowing full spatial 
extent mapping of air pollution. One of the limitations of 
using sun-synchronous satellites like Sentinel -3 is that 
they pass over a target area at the same local mean solar 
time, approximately 10:00 GMT over Stuttgart. This 
limits them from being used to estimate diurnal variations 
of air quality. The approach used in the study can be 
further improved to model diurnal, weekly and seasonal 
AOD, PM and meteorological factors relationships.  
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