
 

Theoretical basis for calculation of the quarries 
sides for collapse 

Andrey Zhabko*, Natalya Volkomorova, and Natalya Zhabko 

1Ural State Mining University, 620144, Ekaterinburg, Russia 

Abstract. The paper is devoted to the development of a mathematical 
apparatus for cal-culation of the quarries sides for collapse. The relevance 
of the paper lies in the fact that today there are no methods for calculation 
of the quarries and open-pits sides for collapse, however, the collapse of 
the sides or ledges in quarries is the most dangerous and unpredictable 
process. The main idea of the paper is to use, when calculating the 
collapse, not a strength criterion, but a criterion that describes the elastic 
limit of rocks. According to modern con-cepts, the formation of extremely 
stressed zones in the entire loaded region begins exactly at the elastic limit, 
in contrast to the ultimate strength, upon reaching which a single fracture 
surface is formed. Thus, the ultimate strength should be identified with 
landslide phenomena, and the elastic limit with the collapse of the rock 
mass. Methods of mathematical analysis and continuum mechanics - 
method of ultimate stress state, are widely used in the paper.  

1 Introduction  

The most common and dangerous types of quarries sides deformation are landslides and 
collapses. Fundamental differences between these two types of deformations are different 
flow rates and places of localization. A landslide is a quite long-term process that allows to 
make a decision to strengthen the slope, and associated with the displacement of the 
landslide prism along a certain surface, which is commonly called the sliding surface. That 
is, the limiting condition is satisfied along a certain surface. As for the collapses, they 
proceed in an avalanche-like manner, which predetermines their danger. And, unlike 
landslides, collapses are caused by a loss of strength at each point of the collapsed mass. In 
other words, with a certain combination of the shape of the slope surface and the external 
load, some part of the adjacent rock mass can be in the ultimate stress state, which can lead 
to its collapse. 

Historically, the science of the slopes stability has been developing in two directions, 
which G.L. Fisenko [1] called the method of ultimate equilibrium and the method of 
ultimate stress state. The method of ultimate equilibrium involves finding the most stressed 
sliding surfaces in the mass and comparisson of the shear and holding stresses along it and, 
in this regard, is a method of landslide phenomena preventing. The method of ultimate 
stress state implies the fulfillment of the differential equations of Navier equilibrium and 
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the limit Coulomb condition at each point of the collapsing prism. This method was 
developed by the efforts of outstanding scientists K. Coulomb (1773) [2], V. Renkin (1857) 
[3],  F. Ketter (1903) [4]. In a more or less final form, theoretically (analytically) is was 
designed by V.V. Sokolovsky (1939). In his fundamental work known as “Statics of 
granular medi-um” [5].     

Judging by the publications, interest in this area of research has declined in recent years, 
with the exception of some works, for example [6]. However, the relevance of this issue is 
increasing due to the increasing depth of existing quarries. Paradoxically, but the current 
normative document on the stability of quarries and open pits [7] does not say anything 
about the calculation of slopes for collapse, and there are objective reasons for this. 

In fig. 1, as an example, slopes calculated using the method of ultimate stress state 
(Renkin - Ketter - Sokolovsky) are given. The load size is combined with the bulk density 
of the slope. 

Obviously, the implausibility of the calculation results that contradict any experimental 
and field data, despite the importance and rigor of the mathematical conclusions obtained 
by the above authors, obviously follows from the figures. 

We will try to deal with the causes of this discrepancy. It is completely obvious that in 
the framework of continuum mechanics, the differential equations of equilibrium are flaw-
less. In this regard, the reasons can only be found in the condition of ultimate equilibrium.  

 
 

Fig. 1. Convex (a) and flat (b) slopes with a calculated weight load. 

Firstly, at the ultimate strength, which is described by the Coulomb criterion, according 
to modern concepts, a general fault is formed (microshear sites are “excluded” from the 
deformation process). The shear sites begin to form already at the elastic limit and in the 
process of hardening. In the process of plastic hardening, complex processes of deformation 
of the translational-rotational nature occur, giving rise to the phenomenon of dilatancy, in 
which the material loses its continuity, expanding in size. Therefore, the continuum 
formulas in the hardening phase (and even more at the ultimate strength) do not reflect 
reality, as, for example, in the elastic phase. Moreover, it was experimentally proved [8] 
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that the ultimate strength of rocks and artificial materials, with rare exceptions, are de-
scribed by the Coulomb criterion. As a rule, the region of real strength of materials lies in-
side the Coulomb passport; which is a consequence of not taking into account dilatant 
changes during plastic deformation, and the elastic region, of course, is even smaller. That 
is, the association of elastic and strength limits is not legitimate! Unfortunately, almost 
everywhere in all geomechanical calculations, including mathematical modeling, the 
fulfillment of the Coulomb criterion is considered as the beginning of the exit of the 
material into the plastic phase (elastic limit). 

Secondly, there is a reason to believe that the orientation of the critical shear sites 
depends on the level of the stress state, that is, there is a dependence on the stress deviator. 

2 Rock elasticity criterion 

In works [8, 9, 10], on the basis of continuum representations, an analytical criterion was 
obtained, analyzed and experimentally verified that determines the elastic limit and ultimate 
strength of rocks, which, in the components of the main normal stresses, has the following 
form: 

31
3 1

tgtgσ σ 2 1 1 k
C

C C

         
  

,                                       (1) 

where 3 1σ , σ  – main stresses; C  – adhesion;   – angle of internal friction ( tgf    – 

coefficient of internal friction); 0 1k   − parameter that takes into account the dilatancy 
of the rocks and determines, for various particular values, the elastic limit, strength and 
plastic potential function. 

It was experimentally confirmed [8] that all the rocks 0 1k  and artificial materials in 
the plastic hardening phase fall into the range of values. When 1k  , criterion (1) describes 
the Coulomb criterion in the components of the principal stresses, and the angle of 

inclination of the critical site to the minimum principal stress is 
4 2

 
 , this fully complies 

with the representations of the ultimate stress state method. When 0k  , equation (1) has 
the following form: 

1
3 1 1

tgσ σ 2 1 σ 2 tgC C
C


      ,                                         (2) 

where   – angle of inclination of the shear area to the minimum principal stress 

(variable, in contrast to the existing concepts). 
Criterion (2) for some rocks determines the elastic limit and for all rocks and materials, 

without exception, describes the lower limit of the onset of plastic deformation and ultimate 
strength [8]. The upper bound for the elasticity and strength limits is described by criterion 
(1) at 1k  . 

The use of elasticity criterion (2) as the limiting condition eliminates the above-
mentioned discrepancies and guarantees a certain margin of safety for quite brittle 
materials.  

3 Theory of slopes calculation for collapse 

Using the elasticity criterion (2), as well as the well-known dependences of continuum 
mechanics (3) (4), 
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2

1,3

σ σ σ σ
σ τ

2 2
x y x y

xy

  
   

 
;                                        (3) 

2τ
tg2α

σ σ
xy

x y




,                                                        (4) 

where , ,x y xy    − components of the plane stress tensor;  - angle between the main 

sites and the axis x , we obtain the following equations: 

τ sin2αtgψxy C .                                                       (5) 

σ σ
cos2αtgψ

2
x y C


 .                                                (6) 

 
2

2 2σ σ σ σ
tg ψ 1 τ

tgφ 2 2
x y x y

xy
C   

    
 

.                         (7) 

Thus, taking into account (5) - (7), we have the system of equations: 

2

τ sin 2αtgψ
σ σ

cos 2αtgψ
2

σ σ tg ψ 1
tgψ

2 tgφ

xy

x y

x y

C

C

C


 
  

   

      

                                       (8) 

Solving the system (8) with respect to the components of a plane stress field, we obtain: 

 

 

2

2

τ sin 2αtgψ

tg ψ 1σ 1 cos2α tgψ
tgφ

tg ψ 1σ 1 cos2α tgψ
tgφ

xy

x

y

C

C

C







       
  
         

                                     (9) 

We highlight that the angle of inclination of the critical site in the system of equations 
(9) ψ is a variable. Let    tgψ , ; cos2α ,p x y p q x y q    , then 

 

 

2

2

2

τ 1

1σ 1
tgφ

1σ 1
tgφ

xy

x

y

Cp q

p
C q p

p
C q p




 


       
  
         

                                               (10) 
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We place the functions (10) into the differential equations of plane equilibrium:  

τσ
0;xyx

x y


 

 
y xy

y x

 
  

 
, 

where   − volumetric weight of the rocks. 
Thus, taking into account the adoption of the dimension of stress in adhesion units 

( 1C  ), we will have the following system of equations: 

2

2

2

2

2ctgφ 1 0
1

2ctgφ 1 γ
1

p p q p p q q
p p q q p

x x x x y yq

p p p q p q q
p q p q p

y y y y x xq

                  
              
      

               (11) 

By adding to the system (11) the equations for the total differentials of the sought 
functions,  

,

p p
dp dx dy

x y

q q
dq dx dy

x y

     
    
  

 

we obtain the basic system of equations of limit equilibrium: 

 

 

2

2

2

2
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1
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1
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p q p q
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                    (12) 

To find the characteristics of the system (12), according to the well-known theory of 
solving hyperbolic systems in partial derivatives [11], it is necessary to solve the equation: 

 

2

2

2

2

2ctgφ 1 1
1

1 2ctgφ 1det 0
1

0 0

0 0

pq
p q p q

q

pq
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q
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    
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 
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 
 
 

.               (13) 

The solution of equation (13) gives two real families of characteristics: 
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.                      (14) 

Similarly, to find the ratio of functions on the system (12) characteristics, it is necessary 
to solve the following equation [11]: 

 

2

2

2
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1 2ctgφ 1 γ
det 01

0

0 0

p q p q

pq
q p q

q

dx dy dp

dx dq
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      
 
 
 
 

.                  (15) 

Thus, solving equation (15), the ratio on the characteristics has the following form:  

 
 

 
 

 
 

2

2

2

2

2 1 2 2 2
4ctgφ

1

12 1
γ γ .

1

p f q dy pq fq fq f
dp dq dq

f p dx q f p

f qp f q
dy dx

p f p q p f p

    
  

  

 
 

  

                (16) 

In this manner, the joint solution of equations (14) and (16) will allow  to determine the 
values of the functions    tgψ , ; cos2α ,p x y p q x y q    at each point of the 

extremely stressed region, as well as the boundary of this region and the external load 
necessary to fulfill the condition of limit equilibrium. 

4 Solution of boundary problems  

Let us consider as an example the problem of constructing the limiting form of a slope, in 
the case when a uniformly distributed load is applied on its upper horizontal platform 
(berm) . The rock characteristics taken into account are as follows:  ;  ;  . 

Fig. 2b shows the extremely stressed region (prism of destruction), and Fig. 2 a shows a 
free concave slope according to V.V. Sokolovsky [5], for the same values of phys-ical and 
mechanical characteristics of rocks.  It should be noted that the proposed solution has a 
number of important fundamental differences in comparison with the solution of V.V. 
Sokolovsky [5]. 

Firstly, the obtained area of possible outfalls and collapses has a more plausible form, 
which we often observe in real conditions, which cannot be said about the shape of the 
slope and the prism of destruction according to V.V. Sokolovsky (see Fig. 2 a). Secondly, 
in the solution of V.V. Sokolovsky [5] the slope is free, that is, without applied stresses. In 
the proposed solution, to fulfill the condition of ultimate equilibrium, slope loading is 
neces-sary. Its role in real conditions is played by rocks, for example, blasted rock mass. 
While excavation of the rock mass, that is, a decrease  , a dump area will be formed in the 
massif, which may collapse when the excavator approaches the bottom. 
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Fig. 2. Extremely intense slope (prism) according to V.V.  Sokolovsky [5] (a) and built using the 
proposed mathematical apparatus (b) 

In addition, in contrast to the solution of V.V. Sokolovsky [5], where the characteristics 
of the system of equations coincide with the sliding surfaces, in the proposed solution, the 
characteristics are not sliding surfaces, but limit the region in which the condition of limit 
equilibrium is satisfied.  

As noted above, issues of forecasting collapses and calculating slopes for collapses are 
not adequately reflected in Russian scientific and regulatory literature. The analysis of 
authoritative foreign scientific collections and monographs devoted to the issues of the 
slope stability [12 - 14] confirms this fact. Moreover, the guide open pits engineering [15], 
which, as indicated, contains comprehensive information on all design issues and devel-
oped by leading experts in the field of sustainability of the sides of open pits in Australia, 
the USA, Canada, South Africa, Chile, England, New Zealand, etc., also does not contain 
information on methods for slopes for collapse calculation. All this indicates the absence of 
a theory (mathematical apparatus) for calculating rock mass for collapse. In the framework 
of this work, a theory is proposed for calculating the stability of quarry sides for collapse. 
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