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Abstract. Here we compare the measured energy production of the solar photovoltaic (PV) energy 

facilities of Solar Star and Desert Sunlight with the values computed in National Renewable Energy 

Laboratory (NREL) System Advisor Model (SAM), by using the SAM database for the typical weather, and 

the different models available, the high concentration photovoltaic (HCPV) model, as well as the PV 

detailed model. Both models are semi-empirical. The HCPV is the most sophisticated model, permitting the 

specification of a much larger number of parameters.  The detailed PV model is less flexible.  The 

comparison shows that SAM computes winter and summer energy productions that are much closer than 

what is shown by the experiments, dramatically underrating the seasonal variability.  This is due to a solar 

resource for direct normal irradiance during winter and summer that is much closer to what is shown by 

other databases, such as Weather Spark, for their incident shortwave solar energy inclusive of seasonal 

variations, the elevation of the Sun above the horizon, and absorption by clouds and other atmospheric 

constituents. The contribution highlights the issue of the mostly missing validation of renewable energy 

tools, in needs of proper high-frequency simultaneous weather and plant data, both at the system and the 

level of the individual components, before their use for performance estimations. 

1 Introduction 
The renewable energy sector and its applications are of 

great interest to many researchers in the last few decades. 

These include but are not limited to desalination, power 

generation and Heating, Ventilation, and Air 

Conditioning (HVAC). Moreover, many researchers 

studied the effects of climatic conditions such as 

temperature, wind speed, and dust on the performance of 

renewable energy systems as well as the trends of 

electricity demands and its susceptibility to the ambient 

air temperature towards sustainable electricity generation 

[1-4] 

Solar photovoltaic (PV) is scaling up rapidly, with 

capacity dramatically increasing in recent years [5]. On 

an annual basis, renewable power grew worldwide by 

14.5%. The solar generation grew by 30 mtoe 

(megatonnes of oil equivalent), only slightly less than 

the increase in the wind (32 mtoe), and provided more 

than 40% of renewables growth. By country, China was 

the largest contributor to renewables growth (32 mtoe), 

surpassing growth in the entire Organisation for 

Economic Co-operation and Development (OECD) (26 

mtoe). Hydroelectric generation increased by 3.1%. 

Nuclear generation also rose by 2.4%, with China (10 

mtoe) contributing almost three-quarters of global 

growth, and Japan (5 mtoe) had the second-largest 

increase. Within the US, solar generation is growing 

significantly especially in California, where there are 

presently 32 plants of registered capacity of 100 MW 

and above, see Table 1. The average capacity factor of 

solar thermal is 0.25, while the average capacity factor 

of solar PV is a much larger 0.30.  Because of increasing 

uptake and the phasing out of back-up conventional 

power plants producing energy on demand rather than 

when the resource solar or wind is available, there is the 

necessity to study the variability of the capacity factor 

with a high frequency of every minute or less, with the 

help of reliable data for what concerns the resource and 

the power plant, as well as to develop reliable models.  

Here we propose a validation exercise of the National 

Renewable Energy Laboratory (NREL) System Advisor 

Model (SAM) software and the supporting resource 

database for the case of the two largest PV solar energy 

facilities of California, Sola Star, and Desert Sunlight.   

Solar Star (Table 2) is a 579-MWAC PV power 

station near Rosamond, California. When completed in 

2015, it was the world's largest solar energy facility in 

terms of installed capacity, using 1.7 million solar panels 

spread over 13 km2. Compared to other PV plants of 

similar size, Solar Star uses a smaller number (1.7 

million) of large form-factor, high-wattage, high-

efficiency, higher cost crystalline silicon modules, 

mounted on single-axis trackers. In contrast to Solar Star, 

Desert Sunlight (Table 3) a 550  MWAC PV power 

station close to Desert Center, California,  uses 8.8 

million of smaller form-factor, lower wattage, efficiency, 
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and cost thin-film CdTe PV modules, mounted on fixed-

tilt arrays and spread over a larger land area of 16 km2.

Table 1. Solar power plants in California. Energy production 

data for the year 2018. Data from [6]. 

Plant Name Power 
MW

Energy 
MWh

Capacity 
Factor

Solar Thermal
Genesis 250 623,189 0.28

Ivanpah I 126 242,425 0.22

Ivanpah II 133 277,055 0.24

Ivanpah III 133 276,327 0.24

Mojave 250 604,777 0.28

Solar Photovoltaic
Antelope Valley 1 250 606,235 0.28

Blythe Solar 1 110 298,847 0.31

Blythe Solar II 125 345,083 0.32

California Flats N 130 361,793 0.32

California Valley 250 674,796 0.31

Campo Verde 147.2 326,508 0.25

Catalina Solar PI,II 110 265,818 0.28

Centinela Solar 174 458,800 0.30

Desert Stateline 299 667,167 0.25

Desert Sunlight 250 250 619,867 0.28

Desert Sunlight 300 300 724,937 0.28

Garland Solar 205.1 601,730 0.33

Great Valley Solar 200 540,441 0.31

Henrietta Solar 102 251,373 0.28

Imperial Solar South 128.9 274,473 0.24

Imperial Solar West 148.7 377,263 0.29

Mt. Signal 3 252.3 137,635

Panoche Valley Solar 240 9,999

Quinto Solar PV 108 285,687 0.30

RE Astoria 100 287,883 0.33

Silver Ridge Mount Signal 200 510,086 0.29

Solar Star I 318 906,705 0.33

Solar Star II 279 790,128 0.32

Springbok Solar 1 105 298,337 0.32

Springbok Solar 2 155 407,457 0.30

Topaz Solar LLC 550 1,335,720 0.28

Tranquillity LLC 205.3 501,751 0.28

  
Table 2 – Data of Solar Star 

Location Rosamond, California
Latitude 34°49′50″N 

Longitude 118°23′53″W

Year Completed 2014

Type Flat-panel PV

Site area 13 km2

Solar Star 1
Nameplate Capacity 398 MWdc 314 MWac

Capacity factor 32.95% (2018)

Solar Star 2
Nameplate Capacity 350 MWdc, 266 MWac

Capacity factor 33.91% (2018)

Table 3 – Data of Desert Sunlight 

Location Desert Center, California
Latitude 33°49′17″N

Longitude 115°23′38″W

Year Completed 2013

Type Flat-panel PV

Site area 16 km2

Desert Sunlight 250
Nameplate capacity 250 MWac

Capacity factor 28.31% (2018)

Desert Sunlight 300
Nameplate capacity 300 MWac

Capacity factor 27.59% (2018)

2 Materials and methods 
Electricity production data of PV plants in the United 

States have been obtained through the collection of 

public domain information from the United States 

Energy Information Administration [7]. The data of [7]

are available every month as a net generation in MWh. 

From the net installed capacity (power) P in MW, 

monthly capacity factors ε are computed by diving the 

monthly electricity production by the product of capacity 

and number of hours in a month.

Simulations are then performed by using SAM [8].

The high concentration PV (HCPV) model represents a 

solar PV energy facility as an array of modules with one 

or more inverters. SAM uses a multi-junction cell's 

efficiency curve and a set of loss factors, as discussed in 

[9]. The efficiency curve is a linear interpolation of the 

table of power conversion efficiencies as a function of 

direct normal irradiance. The model uses an air mass 

modifier polynomial to approximate spectral effects on 

the performance of the module. The loss factors account 

for the optical lens, alignment error, tracker error, wind 

flutter, and other CPV-specific losses. Spectral effects 

are accounted for through air mass modifier coefficients. 

Multi-junction cell efficiency is prescribed based on 

experience. The cell's efficiency is prescribed at each of 

up to five plane-of-array (POA) beam irradiance values 

and specify the reference value for capacity calculations. 

The inverter model is the empirical Sandia inverter

model [10], [11].

Spécification of the system requires a choice of an 

inverter, a CPV module, and an array. SAM then 

assumes that HCPV modules are mounted on 2-axis 

trackers, and calculates tracking power consumption 

based on the specified tracking power. The model is

empirically-based. Despite conceptually different, the 

HCPV may serve the purpose to represent Solar Star or 

Desert Sunlight, by tuning, providing data is available to 

calibrate the many constants. Simulations are also 

performed with the PV detailed module. In this case, the 

model parameters are less. it is necessary to select a 

module, an inverter, and a system design. The PV 

module calculates the DC electrical output of a single 

module based on the design parameters and the incident 

solar radiation (plane-of-array irradiance) calculated 

from the weather file. The different inverter models 

calculate the DC to AC conversion efficiency. All these 

models are empirical. The system design sizes the PV 

system and chooses the tracking options, no tracking, 1 

axis, or 2 axes [8], [9], [10].

3 Results 
The experimental results of Solar Star and Desert 

Sunlight were previously analyzed in [12]. In 2017, 

Solar Star had a capacity factor of 33.0%. In 2016, Solar 

Star had a capacity factor of 28.5%. In 2015, the 

capacity factor was 31.9%. In 2016, Desert Sunlight had 

a capacity factor of 27.9%. In 2015, the capacity factor 

was 26.7%. No data were available for 2017 in [12]. 
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Fig. 1 and 2 present the experimental results for the 

two facilities, as well as the results of SAM 

computations for the typical year with data downloaded 

from SAM. In the SAM simulations, we use the same 

models for Solar Star and Desert Sunlight. This may

overrate the performances of Desert Sunlight, which is

on average 5 percentage points less. We use the HCPV

module with two-axis tracking as well as the PV detailed 

model with no tracking, and 1 axis or 2 axes tracking. 

The major advantage of HCPV is the opportunity to 

easily change the overall efficiency. 

While the curve of capacity factors in the HCPV 

model can be shifted up and down by changing the 

model parameters such as the cell efficiency, there is a

significant inconsistency between the computational and 

the experimental results for the energy production. The 

computational results show a much smaller seasonal 

variation.  This reduced seasonal variability is proper for

both the HCPV and PV detailed models.

Fig. 1. Solar Star (top) and Desert Sunlight solar (bottom) 

energy facilities, measured capacity factors since completion. 

Fig. 2.  Solar Star (top) and Desert Sunlight solar (bottom)

solar energy facilities measured capacity factors over the last 3 

years and computed capacity factors for the typical year. Both 

the HPPV and PV detailed model results are shown.  

What we may notice, apart from the annual average 

capacity factor that experimentally is higher for the most 

sophisticated design of Solar Star, is the much larger 

difference between winter minimum and summer 

maximum capacity factors in the experiments vs. the 

models. This is marginally a problem of the model, that 

is, however, optimistic especially for Desert Sunlight, 

but a problem of the resource. The summer/winter 

results are very close to each other. Thus, Fig. 3 presents 

a comparison of the input irradiance to SAM and the 

solar resource plus clouds coverage obtained by an 

alternative source, weather spark [13].

In Solar Star, the ratio between the beam irradiance 

in June and December is 1.844.  The ratio between the 

input irradiance is the same. The ratio in between the 

energy produced in June and December in the models is 

less, 1.562 in the HPPV because June has the lowest 

ratio in between energy produced and input irradiance, 

0.173, while in December this ratio is 0.204.   
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 Fig. 3. Comparison of SAM input irradiance and weather 

spark solar irradiance and cloud coverage for Solar Star (top) 

and Desert Sunlight (bottom).  

If we consider the independent irradiation data, from 

weather spark [13], the ratio between the average daily 

incident shortwave solar energy in June and December is 

about 2.8. June to September is then the period of clearer 

skies, with very few clouds. December has much larger 

coverage.  

The reason why SAM underrate the differences 

between summer and winter energy production is simply 

that SAM has in input an overrated irradiance for the 

winter compared with the irradiance for the summer. 

From the measured electricity, the ratio of capacity 

factors of June and December is 2.524 (0.467/0.185) for 

Solar Star 1, and it is 2.468 (0.474/0.192) for Solar Star 

2, not that far from the weather spark data [13], but very 

far from the SAM resource database.  

The very close ratio of energy produced during the 

summer and the winter is shown also by the simulations 

for Blythe, CA. From the measured electricity, the ratio 

of capacity factors of June and December is 2.909 

(0.418/0.144) for Desert Sunlight 1, and it is 2.909 

(0.407/0.140) for Desert Sunlight 2, not that far from the 

weather spark data [13], where the ratio between the 

average daily incident shortwave solar energy in June 

and December is about 2.6. The ratio of the beam 

irradiance in the SAM weather file is only 1.54. This 

again explains most of the differences between 

experiments and simulations in Fig.2. Apart from the 

typical year that is not the specific year, there is certainly 

one issue with the source of irradiance data.

The total daily incident shortwave solar energy 

reaching the surface of the ground over a wide area, 

proposed in Weather Spark, takes into full account the 

seasonal variations in the length of the day, the elevation 

of the Sun above the horizon, and the absorption by 

clouds and other atmospheric constituents. This 

shortwave radiation includes visible light and ultraviolet 

radiation. Unfortunately, this result is only available as a 

curve of daily values, and not hourly as needed in the 

TMY file. Hence, the result of the SAM simulation is 

simply corrected by taking the monthly input irradiances 

a fraction of the June monthly input irradiance taken as 

the ratio of the monthly average daily incident shortwave 

solar energy of the specific month and the June month 

from Fig.3. The ratio of the AC energy and the input 

irradiance for every specific month is taken unaltered. 

Fig. 4 presents the result of the corrected simulations 

with drastically improved accuracy. 

Fig. 4. Solar Star (top) and Desert Sunlight solar (bottom) solar 

energy facilities measured capacity factors over the last 3 years 

and computed capacity factors for the typical year with and 

without corrections for input irradiance.
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4. Discussion and Conclusions 
Real-world electricity production data has been shown 

for the two largest PV solar energy facilities in 

California (and the US). It is shown that after some 

issues upon start, these facilities are now delivering 

relatively high capacity factors. The latest capacity 

factors are 33.91% (for the more expensive Solar Star) 

and 27.59% (for the less expensive Desert Sunlight).  

Over the year, the experimental capacity factors fluctuate 

from 0.467 to 0.185 in Solar Star 1 (ratio 2.524), and 

0.474 to 0.192 in Solar Star 2 (ratio 2.468), while they 

fluctuate from 0.418 to 0.144 (ratio 2.909) in Desert 

Sunlight 1, and 0.407 to 0.140 (ratio 2.909) in Desert 

Sunlight 2. The solar resource is about the same in the 

two locations. 

The computational results with SAM are everything 

but accurate. However, the major issue is not the simple 

semi-empirical model, but the resource estimation,

which dramatically underrates the seasonal differences.  

In the SAM weather database, the ratio in between the 

beam irradiance summer/winter for Solar Star is 1.844,

while weather spark suggests a ratio for the average 

daily incident shortwave solar energy of about 2.8, plus 

clearer skies during summer. The weather spark result is 

consistent with the electricity production data. The SAM 

weather file is not.  

In the SAM weather database, the ratio in between 

the beam irradiance summer/winter for Desert Sunlight 

is 1.54, while weather spark suggests a ratio for the 

average daily incident shortwave solar energy of about 

2.6, plus clearer skies during summer. The weather spark 

result is consistent with the electricity production data. 

The SAM weather file is not.  

While further tuning of the semi-empirical SAM 

model is needed before using this software to compute 

the performances of novel PV installations, the 

availability of accurate data for validation is a must.  

As it happens with the wind resource that in the SAM 

supporting weather files is overrated, it also happens 

with the solar resource to be unreliable.  In this case, it is 

the seasonal variability that is dramatically underrated.  

Validation of accurate and reliable renewable energy 

software tools must be based on high frequency (every 

minute or less) accurate weather and plant data, with this

latter both at the system, as well as the components, level.  

Validation attempts such as comparison of computed 

annual electricity production with rumors in the press of 

electricity production for the same plants, such as [14],

[15], [16], are by no way a proof that specific renewable 

energy tools can be used to design new renewable 

energy facilities properly computing their performances.  
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