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Abstract. A novel way to apply machine learning algorithms on the incremental capacity analysis (dQ/dV) 
is developed to identify battery cycling conditions under different temperatures and working SOC ranges. 
Batteries are cycled under each combination of temperatures (-10oC, 25oC, 60oC) and SOC ranges (0-10%, 
25-75%, 90-100%, 0-100%) up to 60 equivalent cycles. The discharge data is transformed into dQ/dV-V 
curve and its features of the peaks and valleys are further taken for machine learning. Both supervised and 
unsupervised machine learning algorithms (PCA and LDA) are applied to classify batteries in terms of 
temperature or SOC range. The results reveal that batteries cycled under different temperatures can be 
identified separately regardless of the working SOC range. When splitting 60 samples with a ratio of 
training set equals to 0.85, the remaining test set gives an identification accuracy of 89% in temperature and 
67% in working SOC range. 

1 Introduction  
Rechargeable batteries have been widely used in our 
daily life, for example, from a stationary electrical 
storage system connected to an electric grid to portable 
devices such as smartphones and laptops. Among several 
types of rechargeable batteries, the lithium-ion battery is 
the dominant one with high energy density and working 
voltage. Nowadays, lithium-ion batteries can be easily 
found on 3C products and electric vehicles. The real 
battery usage in these applications suffers degradation 
from different temperatures and working SOC ranges due 
to environmental temperature, device design, and user’s 
habit that makes life evaluation difficult [1-3]. There 
have been massive researches on battery aging behavior 
under different temperature and working SOC ranges 
owing to their significant impact on battery degradation 
mechanisms, which applies huge uncertainty and 
variation in battery lifespan and safety [4-8]. Thus, there 
has been numerous inspection methods developed to 
evaluate the cell aging status. One of the well-known 
methods is called incremental capacity (dQ/dV) analysis, 
which transfers charging/discharging data into dQ/dV-V 
curves followed by observing peak shifts or amplitude 
changes [9-11]. Although many tests have been 
conducted and shifts of peaks have been explained in 
previous studies, an easy, general and accurate way to 
identify or predict battery cycling conditions remains 
unrevealed. Recently, machine learning as well as deep 
learning have privileged in all industry including lithium-
ion battery to address complex problems by processing 
classification or providing more insight from only data. It 
has been largely studied in state of health (SOH) and 

remaining useful life (RUL) prediction [12-13].Hence, 
this study tries to apply machine learning algorithms on 
features extracted from dQ/dV-V curve to investigate 
changing directions of these features under different 
cycling temperatures and working SOC ranges in pursuit 
of the identification of battery aging status. 

2 Experimental procedure 
Commercial Panasonic 18650 cell, 3350 mAh, was 
selected for the test. All cells were conducted 3-cycle 
conditioning before experiments to check cell consistency, 
these conditioned samples were called fresh cells 
hereafter. Each cell corresponded to one of combinations 
composed of different temperature (-10oC, 25oC, 60oC) 
and working SOC ranges (0-10%, 25-75%, 90-100%, 0-
100%). The cells were cycled by CC discharge mode and 
CC-CV charge mode with 0.2C within a voltage range 
between 2.5V and 4.2V and a cutoff current of 0.02C. For 
0-10% SOC, cells were fully discharged before 
charge/discharge cycles. For 25-75% SOC, cells were 
discharged to 25% SOC and then followed by 
charge/discharge cycles. For 90-100% and 0-100% SOC, 
cells were directly cycled from a fully charged state. To 
ensure all cells are cycled under proper SOC ranges, the 
maximum capacity at each cycling temperature was 
measured as a baseline to estimate charged/discharge 
time. The charge/discharge time and cycles for 15 
equivalent cycles under different temperature and SOC 
ranges are summarized in Table. 1. After every 15 
equivalent cycles, cells were conducted a 2-cycle 
retention capacity test according to battery specification, 
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0.5C charge with a cutoff current equals to 0.02C and 
0.2C discharge, followed by a 24-hour rest to record 
OCV drop. The 2nd  discharge data in the retention 

capacity test was further used for incremental capacity 
(dQ/dV) analysis and machine learning.  

 

Table 1. Cycling parameters for 15 equivalent cycles under different temperatures and SOC ranges. 

SOC range 
-10 oC 25 oC 60 oC 

C/D time Cycles C/D time Cycles C/D time Cycles 
0-10% 1504s 150 1781s 150 1841s 150 

25-75% 7520s 30 8905s 30 9205s 30 
90-100% 1504s 150 1781s 150 1841s 150 
0-100% * 15 * 15 * 15 

*Cells stop charge/discharge when reaching termination conditions. 

3 Experimental procedure 

3.1 Battery cycling data 

The discharge capacity and 24-hour OCV drop of fresh 
cells (3-cycle conditioning) and cycled cells (15, 30, 45, 
60 equivalent cycles) are summarized in Fig. 1 and Fig. 2 
labeled with temperature and working SOC range 
separately. In Fig. 1, cells cycled under -10 oC and 60 oC 
show lower retention capacity but cannot be separated 
clearly, and cells cycled at 25 oC shows higher capacity 
but still partially mix with cells cycled at 60 oC. Some of 
the cells cycled under -10 oC and 60 oC have an obvious 
higher OCV drop after 24-hour rest but the remaining 
cells have lower OCV drop than fresh cells and are mixed 
with cells cycled at 25 oC. In Fig. 2, 0-10% SOC cycled 
cell has slightly higher retention capacity while other 
SOC ranges are mixed together. Similarly, most of the 
cells have OCV drops lower than fresh cells and are 
inseparable. Based on the result, the aging effect caused 
by cycling temperature or working SOC range factors is 
not easy to be identified by simply retention capacity and 
24-hour OCV drop data. 

 
Fig. 1. The discharge capacity and 24-hour OCV drop of fresh 
and cycles under different cycling temperature. 

Fig. 2. The discharge capacity and 24-hour OCV drop of fresh 
and cycles under different cycling SOC range. 

3.2 Features extracted from dQ/dV-V curve 

The incremental capacity analysis and feature extraction 
process applied on 2nd discharge data in the retention 
capacity test are summarized in Fig. 3(a) and follows the 
steps: (i) slice original discharge data into multiple 
segments with a voltage interval of 0.011V from 4.2V to 
2.5V; (ii) calculate the capacity difference (dQ) in each 
segment and divided by 0.011V (dV) to obtain dQ/dV 
value; (iii)  calculate mean voltage of each segment; (iv) 
take dQ/dV as y-axis and mean voltage as x-axis to plot 
dQ/dV-V curve. The dQ/dV-V curves of fresh cells (red 
solid line) and cycled cells (black dash line) are shown in 
Fig. 3(b). The study of dQ/dV-V curve generally focuses 
on the positions of peaks and valleys because they 
represent a phase transformation in cathode or 
intercalation of lithium into a graphite anode that is 
highly-related to cell aging behavior. Hence, four peaks 
(P1, P2, P3, P4) and three valleys (V1, V2, V3) are 
marked in Fig. 3(b), and their x-values and y-values are 
used as features for algorithms to make grouping or 
classification later in the sections 2.4 and 2.5. For 
example, the x-value and y-value of peak4 (P4) are 
marked as VP4 and IP4 respectively. From the dQ/dV-V 
curves, the fresh cells with uniform curves usually 
indicate the cell quality is consistent and it serves as a 
baseline to observe how curve shifts after cells are cycled. 
After being aged, cells show the following trends: peak1 
(P1) shifts to an upper-left place; peak2 (P2), peak3 (P3), 
peak4 (P4) and valley2 (V2) shift to a lower place; 
valley1 (V1) and valley3 (V3) shift to both an upper and 
a lower place. It should be noticed that the curves near 
peak3 (P3), valley3 (V3), and peak4 (P4) have large 
variation without a consistent trend, which might be 
caused by different cycling conditions. 
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(a)                                                                              (b) 

Fig. 3. (a) the flowchart of data processing from Q-V plot into dQ/dV-V plot and feature extraction from dQ/dV-V curve; (b) the 
dQ/dV-V curves of fresh (red solid line) and cycled cells (black dash line). 

 
The features extracted from the dQ/dV-V curve are 
further standardized in order to improve algorithm results. 
To be more precise, the standardization rescales data with 
a mean of 0 and a standard deviation of 1, and it is widely 
used before machine learning algorithms to avoid being 
governed by a particular feature having a broad range of 
values. The normalized features labeled with cycling 
temperature and SOC range are shown in Figs. 4-7. For 
different cycling temperatures, 60 oC cycled cells have 
higher VV3 and IP1 than -10 oC cycled cells, but lower 

IV3 than -10 oC cycled cells. Among all y-value (I) 
features, 25 oC cycled cells locate in the middle of the 
distribution. In contrast, for different cycling SOC ranges, 
only 0-10% SOC cycled cells show higher IV2 and lower 
IV3 clearly among all cells. The remaining SOC ranges 
don’t provide any obvious trend. Overall, the trends 
mentioned above are unable to separate cycled cells 
under different temperatures or working SOC ranges. In 
next section, PCA will be applied to reduce the data 
dimension to visualize data distribution. 

 

Fig. 4. Normalized data of x-value (V) of each peak (P1-P4) and valley (V1-V3) in dQ/dV-V curve labeled with cycling temperature. 

 
Fig. 5. Normalized data of y-value (I) of each peak (P1-P4) and valley (V1-V3) in dQ/dV-V curve labeled with cycling temperature. 
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Fig. 6. Normalized data of x-value (V) of each peak (P1-P4) and valley (V1-V3) in dQ/dV-V curve labeled with cycling SOC range. 
 

 
Fig. 7. Normalized data of y-value (I) of each peak (P1-P4) and valley (V1-V3) in dQ/dV-V curve labeled with cycling temperature. 

 

3.3 Unsupervised algorithm (PCA) analysis 

Principle component analysis (PCA) is an unsupervised 
algorithm used to keep maximum data variation when 
reducing data dimensions to provide a visualized data 
distribution. The PCA plots of cells cycled under 
different temperatures and working SOC ranges are 
shown in Fig. 8 (a) and (b) respectively. In Fig. 8 (a), the 
fresh cells have the most narrow distribution, while cells 
cycled under -10 oC and 60 oC show the widest 

distribution among all. It indicates that cells cycled under 
-10 oC and 60 oC will cause much more variation in 
features than those cycled at 25 oC. Besides, a slight 
grouping can be observed along PC2-axis but there are 
still around half of the cells mixed together. In contrast, 
the PCA result of different SOC ranges provides not 
much information but wide and mixed distributions 
among all cycled cells. It can be inferred that the working 
SOC range effect may be suppressed by the temperature 
factor in feature variation. 

 
(a)                                                                                                      (b) 

Fig. 8. PCA plots of cells cycled under different: (a) temperature (b) SOC range. 
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When looking into the cumulative explained variance 
chart shown in Fig. 9, the first two principal components 
only accounts for 48% explained variance. It indicates 
that multiple features cause similar variance so that even 
after rotating the principal component such as PC1 and 
PC2, the original variance is still unable to be effectively 
explained in a 2-D projected plane. Thus, a supervised 
algorithm is applied in the next section to obtain more 
explained variation and achieve the classification of 
cycling conditions. 

 

Fig. 9. PCA cumulative explained variance along with the 
number of principal components. 

3.4 Supervised algorithm (LDA) analysis 

Linear discriminant analysis (LDA) is a supervised 
algorithm used to maximize the gap between groups but 
minimize internal differences within a group. The LDA 
plots of different cycled temperatures and SOC ranges are 
given in Fig. 10 (a) and (b) respectively. According to the 
evaluation test in a test set ratio of 0.15, different cycling 
temperature gives an accuracy of 89%, while different 
SOC range only has an accuracy of 67%. In Fig. 10 (a), 
cells cycled under different temperatures can be 
obviously separated into three blocks along LD1-axis. It 
indicates that the LD1-axis is highly related to 
temperature and its values of 0.2 and -0.2 can be used as 
a simple way to identify cycling temperature. For 
example, cycled cells that have LD1 higher than 0.2 can 
be identified as 60 oC cycled cells. It should be noticed 
that this way of identifying cycling temperature applies to 
all working SOC ranges. On the other hand, cells cycled 
under different working SOC ranges are unable to be 
thoroughly categorized as four blocks. If the 90-100% 
SOC range is removed, the remaining SOC ranges can be 
identified along LD1-axis with specific values of 0.3 and 
-0.2. To understand the relationship between the LD1-
axis and the dQ/dV-V curve, the eigenvalues are further 
discussed in the next section. 

 
(a)                                                                                                      (b) 

Fig. 10. LDA plots of cells cycled under different: (a) temperature (b) SOC range.

3.5 Insight Into dQ/dV-V curve from eigenvalues 

In both PCA and LDA, the axes are also called 
eigenvectors, which are linear vectors composed of each 
feature multiplied by each corresponding eigenvalues. 
The higher the eigenvalue, the more important the 
corresponding feature in contributing explained variation. 
Generally in LDA, when a feature has a high eigenvalue, 
it represents the feature has more power to classify 
samples according to their labels. The eigenvalues of 
PCA and LDA (temperature and working SOC range) 
algorithms are summarized in Table. 2. From the LDA 
(temperature) result, the VP4, IP3, IV3, and IP4 features 
have high eigenvalues marked in bold in LD1-axis, and 
LD1-axis is shown capable of classifying cycling 

temperature in Fig. 10 (a). Thus these features are highly 
related to cycling temperature. In addition, these features 
correspond to peak3 (P3), valley (V3), peak4 (P4) in 
dQ/dV-V curve, shown in Fig. 3(b), ranging from 3.4V to 
3.6V. It indicates this specific voltage range in dQ/dV-V 
curve is highly temperature-dependent and its shifting 
behavior can be used to identify battery cycling 
temperature. On the other hand, we can observe the LD1 
eigenvalues in LDA (SOC range) and those in LDA 
(temperature) are nearly the same. It indicates most of the 
explained variation in LDA (SOC range) might be caused 
by temperature factor. In other words, the cycling 
temperature has a more dominant impact than the 
working SOC range in the shifting behavior of dQ/dV-V 
curves. 
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Table 2. Eigenvalues of PCA and LDA algorithms. 

Feature 

PCA 
(Temperature & SOC range) 

LDA  
(Temperature) 

LDA  
(SOC range) 

PC1  
(26.87%) 

PC2  
(21.46%) 

LD1 
(80.51%) 

LD2 
(10.53%) 

LD1 
(61.46%) 

LD2 
(25.09%) 

VP1 0.20 0.20 0.16 0.13 0.19 0.19 
VV1 0.12 0.16 0.04 -0.07 0.06 -0.05 
VP2 0.29 0.05 -0.02 0.04 -0.09 0.10 
VV2 0.11 -0.21 0.04 0.09 -0.01 0.08 
VP3 0.10 -0.22 -0.06 -0.08 -0.06 0.04 
VV3 0.28 -0.18 0.04 0.02 -0.13 0.17 
VP4 -0.12 0.44 -0.24 0.23 -0.28 0.40 
IP1 -0.13 -0.46 0.20 0.20 0.09 0.26 
IV1 0.10 -0.30 0.05 -0.10 0.00 -0.05 
IP2 0.14 0.36 0.16 -0.14 0.07 -0.39 
IV2 0.50 -0.04 -0.17 -0.31 0.00 -0.43 
IP3 0.49 -0.07 -0.54 0.75 -0.68 0.47 
IV3 0.06 0.41 -0.25 0.04 0.28 0.00 
IP4 0.46 0.05 0.67 -0.42 0.55 -0.37 

 

4 Conclusion 
The incremental analysis (dQ/dV) analysis is an effective 
way in diagnosing the battery aging behavior and a 
supervised algorithm is useful to classify cycling 
temperature and provide insight into the shifting behavior 
of dQ/dV-V curves. From the observation of retention 
capacity, 24-hour OCV drop, peak and valley positions in 
dQ/dV-V curve, some insignificant trends can be found 
but too complicated and insufficient to identify cycling 
temperature or working SOC range. By applying a 
supervised LDA algorithm, cells cycled under different 
temperatures (-10oC, 25oC, and 60oC) can be well 
separated into three blocks in a 2-D projected plane. 
According to an evaluation test, the identified accuracy 
reaches 89% in a test set ratio of 0.15. Further study on 
eigenvalues of the LD1-axis reveals that the effect of 
cycling temperature mainly reflects on a specific voltage 
range from 3.4V to 3.6V in the dQ/dV-V curve. On the 
other hand, although cells cycled under different SOC 
ranges cannot be well identified, the eigenvalue 
information shows most data variance is caused by the 
cycling temperature factor. In other words, the cycling 
temperature is more dominant than the working SOC 
range in the shifting behavior of dQ/dV-V curve. 
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