Scope of Intelligence Approcahes for Unit Commitment Under Uncertain Sustainable Energy Environment For Effective Vehicle To Grid Operations-A Comprehensive Review

Dinesh Dhawale* 1, 2, and Vikram Kumar Kamboj1

¹School of Electronics and Electrical Engineering, Lovely Professional University, Punjab, INDIA ²Department of Electrical Engineering, Priyadarshini College of Engineering, Nagpur, Maharashtra, INDIA

> Abstract. Electric vehicles are getting popularity as these are eco-friendly and could be a part of power sector in the future. Electric Vehicles are the smart hybrid vehicles, which stores electric power during their operation, which could be stored in storage cells. These electric vehicles may be plug-in electric vehicles or battery operated electric vehicles. The concept of aggregators may be utilized, wherein the stored energy in vehicles could be supplied to grid during parking hours .This also facilitate the consumers to sale power during the high power demand and purchase power during low power demand. Thus, a bi-directional flow of power could be possible either from vehicle to grid or vice-versa. A large penetration of electric vehicles could result in increase in power demand which could be compensated by proper coordinated unit commitment and optimization techniques. The increasing load on grid by the impact of demand and trends in small generating units which require proper selection of number of generating units to put in line and other units in off condition calls for the concept of unit commitment. It is the selection of more efficient units to be in service and shutting down the other unit while maintaining all the other constraint constant. This would result in effective power flow in an economic manner, simultaneously maintaining the adequacy and reliability of the system. The proposed research represents the scope of intelligence algorithm for unit commitment problem with effective solution of vehicle to grid operations along with sustainable energy for realistic power system.

1. INTRODUCTION

In the era of development and advancement in technology, electrical power plays a vital role as power is essential commodity for the functioning of any industrial growth. As the main source of electrical energy are fossil fuel energy sources which are diminishing rapidly and would lead to an end one day. This requires careful attention to make systematically and economically the use of these resources. Also ,the power generation companies needs to motivate the small power industries to motivate the small power generation units to take part in the contribution to take part in the contribution to decrease the threads of power crisis. As a necessity one should make enough attempts to utilize non-conventional energy sources so that the burden on conventional energy source could be reduced to a larger extend. This would result in more and more involvement of sustainable energy sources. But as we know that these sources are intermittent energy sources, as they do not provide a constant output power. Transforming present energy system towards one emphasized by renewable energy comes with some challenges, leads to make proper co-ordinate use of conventional and sustainable energy sources provides the optimum power generation and transmission could be possible maintaining all the constraints constant. Secondly, the invent of hybrid electric vehicles could also play an important role to reduce the dependency on conventional energy source. Thus, the proposed research proposal is the development of a hybrid system which combines the overall features of unit

^{*} Corresponding author: <u>ddhawale56@gmail.com</u>

[©] The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

commitment, renewable energy sources with the effect of hybrid electric vehicles.

2. LITERATURE REVIEW

Electrical power is generated by various power generating units such as thermal, hydro, nuclear, solar and wind etc. These generating units are required to turn on and off in proper sequence, while doing so the expense of on off/ should be minimum. This process of analysis and continuously changing generating schedule is referred to as unit commitment (UC)[1].Unit commitment is an optimization problem used to select the operation schedule at each hour interval with changing loads within permissible limit. Also due to large penetration of intermittent sources led to more complex in satisfying the supply and demand. Esmaeeli et al.[2] in his work suggested that with increase in wind power, power generation flexibility must increase as well. Jonghe et al. [3] describes the various complexities introduced in generation schedule by these intermittent sources . Shahriar et al. [4] presents a new technique to solve problems due to renewable energy penetration by formulating a Mixed Integer Linear Programming (MILP) technique. Further, Wang et al. [5] presents the increased complexity due to introduction of large electric vehicles as new participants in the existing power system. However, Vehicle to grid (V2G) can help to improve the reliability and stability of the grid, alleviate power shortages, and reduce peak power, spinning reserve, voltage and frequency regulation .Yang et al. [6] proposed a hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles. These electric vehicles can act as storage cells when large number of batteries are connected to form aggregators. These aggregators may be used as spinning reserve thus reducing dependency on conventional generating sources. The combined activity of the hybrid power system should be utilized appreciably in intellectual manner to effectively produce economic generation schedule. This calls up for new novel algorithms for providing more optimal solutions to these hybrid UC problems .Dynamic programming (DP)[7], Lagrangian relaxation(LR)[8], Harmony search (HS)[9], (PSO)[10],Genetic optimization Particle swarm algorithm(GA)[11] are some of the recent optimization methods to handle conventional UC problem. Seth et al. [12] in his work describes improved priority list method to effectively а ramp rate constrained unit commitment.Table-1 presents a comprehensive review of some related intelligent and innovative approach to tackle complex UC problems.

Table-1:	Comprehen	sive rev	view of U	C papers

Author	Year of Publicati on		Brief Review	Constraints		
A. Y.	2009	[10]	This paper	Power		
Saber			presents a	balance,		
and G.			discrete particle	V2G,		
Κ.			swarm	Spinning		

Venaya gamoort hy			optimization technique used to optimize the scheduling of gridable vehicles. PSO method used also reduces operation cost by charging the vehicles from renewable sources or utility during off-peak load when price is low and discharge to grid at peak load when price is high (V2G)	reserve, Generation limits, Vehicle parking limits, Transmissio n constraints
M. Singh, I. Kar, and P. Kumar	2010	[13]	This paper presents simulation of actual data of Guwahati city with due effect of EV penetration .It is observed that coordinated charging and discharging patterns not only flatten the voltage profile but also reduces the transmission losses	Slow Charging, Medium Charging , Fast Charging, EV Coordinated
B. Palminti er and M. Webster	2011	[14]	In this research, unit commitment problem is combined with into a single mixed-integer optimization which focuses on the dynamic thermal power system .Also suggested that for achieving carbon emission targets policy makers may approach by providing incentives to customers to gain regulatory goals	Economic Dispatch, Generation Expansion, Expansion planning, Operating Reserve
C. De Jonghe, E. Delarue , R. Belman s, and	2011	[3]	In this research, an alternative methodology is introduced which provides system flexibility with	Operational Constriants, Must run level, Ramp rate constraints, Maintenance

W. D'haese leer			better storage capacity. It also provides analysis of the impact of a high level wind penetration on the optimal generation by combining	Constraints		Provas	2013	[18]	seen that introduction of V2G technology increases power system flexibility and facilitates more penetration of wind power In this research,	unit capacity
			screening curve methodology with a linear programming (LP)			Kumar Roy	2013	[18]	the universe due to gravitational forces logic is	limit, ramp rate limits, spinning reserve con- straints,
S. Kamboj , W. Kempto n, and K. S. Decker	2011	[15]	This paper presents a deployed multi- agent system which integrate electric drive vehicles to grid. These power regulations markets depends upon ancillary (eg. Spinning reserve) and non-ancillary (eg. peak power) services. A detailed study of	Maximum rate of charging, Maximum regulation- up power, Maximum regulation- down power					applied to thermal unit commitment problem. The proposed algorithm is tested using Matlab programming and results are compared with other known algorithms for six systems during a schedule of 24H.	minimum up time and down time constraints
			V2G, system equipment's and associated accessories for power flow within the standard constraint.		H Y a	L. Liu, H. Li, Y. Xue, and W. Liu	2014	[19]	In this research, reactive power is compensated using compensation algorithm which tackles system operation issues	maximum power point tracking, Reactive power, Capacitor charging
G. O. Suvire, M. G. Molina, and P. E. Mercad o	2012	[16]	In this research, dynamic model is developed which stores energy produced due to wind generation and integrated with microgrids. This hybrid system controls voltage, frequency and smooth's active fluctuations due to DG penetration.	Dc link voltage, variable speed, Sudden change in load			2014		with improved system stability and reliability. Exact power distribution is made by proper coordination between power variables. Thus, proposed method effectively improves system performance in terms of stability and reliability.	
A. Foley, B. Tyther, P. Calnan, and B. Ó Gallach óir	2013	[17]	In this research, of EV charging in the single whole electricity market in Ireland is analyzed. EV charging under peak and off- peak charging scenario's is examined. It is	Ramp rate up and down, Minimum up and down time, Emission coefficients		M. E. El- Hawary	2014	[20]	This research presents the benefits of smart grid such as environment and socio-economic. It also presents the dynamic interactive, real time infrastructure and building the	Charging and Discharging Constraints

				I	<u>г</u>		1	,	
Yaowen Yu, Peter B.	2014	[21]	power system of the future through smart grid. It also provides all information, possibilities, polices and benefits in designing a smart intelligent system This research presents a combined	Start-up constraints, Minimum				typical grid- connected microgrid. Three modes of operation are presented. A balance energy exchange between PHEVs and microgrids is presented with reduced cost and improved efficiency.	
Luh, Eugene Litvino v, Tongxin Zheng, Senior, Jinye Zhao, and Feng Zhao			Markovian and Interval unit commitment to solve the problem of congestion created due to uncertain nature of wind generation. In this method global node states are taken care by interval optimization and local nodes states are handled by Markovian strategy.	up/down, ramp rate constraints, generator capacity constraints	H. LIU, P. ZENG, J. GUO, H. WU, and S. GE	2015	[24]	In this research, controlled EV charging strategy with due consideration of sustainable power outputs is effectively employed using genetic algorithm. Furthermore, considering the limitations of sustainable energy sources, the developed hybrid system provides	Charging and Discharging Constraints
V.K. Kamboj , S.K. Bath, J.	2015	[22]	In this research, local search ability of DE is improved by	Power balance constraints, Spinning				improved economic scheduling	
S. Dhillon	2015	[22]	utilizing random search approach to enhance exploitation phase and is then applied to UCP. The hybrid system is tested for standard benchmark function and engineering problems for 30 trials and 500 iterations.	Spinning reserve, Thermal constraints	S. Umama heswara n and S. Rajiv	2015	[25]	In this paper, a review of benefits and barriers of renewable energy generation subjected to various financial and social constraints are studied. It further reviews the emerging trends and barriers in the financing	Wind and solar uncertainties
C. CHEN , S. DUAN	2015	[23]	In this research, impact of different charging /discharging patterns on microgrids is	Minimum/m aximum power limits, Energy capacity	N.	2015	[26]	financing landscape and analyses the impact of policy performance in this context. This paper Po	Power
			analyzed using genetic algorithm and economic schedule is evaluated for a		Zhang, Z. Hu, X. Han, J. Zhang, and Y.			presents a novel unit commitment model using fuzzy sequence which	balance constraint, Spinning reserve constraint Minimum

				/ 22 /	1	*** ~		F. C. C		
Zhou			effectively	on/off time		W. S.	2016	[29]	In this research,	Probabilistic
			modifies	constraint,		Tan and			MILP formulation is	chance
			constraints to	Upper limit		M.			formulation is	constraint
			eliminate the	of wind		Shaaban			used for solving	
			hurdles posed	power					ramping	
			due to uncertain	penetration					capability and	
			characteristics	rate					operating	
			of sustainable						reserve problem	
			energy sources.						related to	
			It further						traditional UC	
			explains how the						by	
			power available						implementing a	
			in storage cell						chance	
			act as a reserve						constraint set.	
			during						Further, to	
			unavailability of						improve	
			wind power						computational	
			while satisfying						efficiency,	
			the demand with						constraint set is	
			low cost and						adjusted using	
			improved						projected	
			efficiency.						disjunctive	
K. S.	2015	[27]	This paper	Load					programming.	
Reddy,			presents reserve	balance		V. K.	2016	[9]	In this research,	Load
L. K.			system in unit	constraint,		Kamboj			exploitation	balance
Panwar,			commitment in	Responsive		, S.K.			phase is	constraint,
and R.			deregulated	reserve		Bath,			enhanced by	Reserve
Kumar			market by the	constraint,		J.S.			combining	constraint,
			participation of	Thermal unit		Dhillon			random search	Thermal unit
			electric vehicles	constraints,					algorithm for	constraints
			as an responsive	Minimum					solving UC	
			reserve to	up/ down					problem. This	
			enhance power	time, Ramp					hybrid scheme	
			system	up/down					inspired from	
			reliability at	rates					musical tunes is	
			reasonable cost.						found to be	
			It further						divergence free	
			encourage to						and able to	
			earn more						handle discrete	
			revenue from						and continuous	
			the required						variables	
			reserve facility						without prior	
			in the event of						setting of	
			outage or						variables. Thus,	
			sudden demand						it utilizes	
			by satisfying						various inherent	
			through electric						qualities to	
			vehicle as						provide	
			reserve.						effective	
L.	2016	[28]	In this research,	Linear and					solution for a	
Yang, J.			proposed	non- linear					particular	
Jian, Z.			method converts	constraints					optimization	
Dong,			the conventional			,			problem	
and C.			UC problem into			R. Á.	2016	[30]	In this research,	Cut-off
Tang			a mixed integer			Fernánd			extended range	voltage,
			linear			ez, F. B.			electric vehicle	Charging
			programming by			Cillerue			(EREV) based	Constraints,
			combining			lo, and			in a fuel cell	Discharging
			several small			I. V.			electric vehicles	constraints
			non-linear			Martíne			(FCEV) set	
			problems and			Z			model is	
			provides better						presented to	
			solutions with						achieve better	
			less iterations						efficiency and	
1					I			1		
			and also reduced						performance.	
			simulation time						This article	

			increased run-		and G.			employed using	constraints,
			range, fuel- efficiency by the combined action of electric		Li			decoupling technique to satisfy demand response and	Operation time constraints,
			vehicle,					improve	Spinning reserve
			combustion engine and					economy by controlling	constraints, Customer
			hydrogen fuel.					randomness in	satisfaction
			A combined effect of all					generation .Further, it	constraints, Demand
			these					reveals that	power
			participants will result in better					operational cost will vary	constraints
			performance and					according to	
			accurate energy management.					customer power usage and wind	
K. S.	2016	[31]	In this paper	Load	E.G. All	2016	[2.4]	uncertainties.	D
Reddy, L. K.			fireworks algorithm is	balance constraint,	E.S. Ali , S.M.	2016	[34]	This study describes that	Power conservation
Panwar, R.			developed to improve dual	Reserve constraint,	Abd Elazim,			power transmission	constraint, Voltage
Kumar,			objective	Thermal unit	A.Y.			losses may be	constraint,
and B. K.			function including both	constraints	Abdelaz iz			reduced by using PV system	DG limits constraint,
Panigra			emissions and					and wind	Line
hi			cost using Electric vehicles					generation through	Capacity Constraint
			and Renewable					distributed	
			energy technologies. In					generation. In the proposed ant	
			this paper author effectively					lion algorithm allocation and	
			utilizes the logic					sizing of DG	
			of sparkles travel in space					sources generates	
			to find the					optimum power	
			objective function					with minimum losses.	
V. Monteir	2016	[32]	This research	Charging and	C. Deckmy	2017	[35]	In this research, charging	Load balance
o, J. G.			presents, a hybrid prototype	and Discharging	n, J.			schedule for EV	constraint,
Pinto, and J.			battery charger which operates	Constraints	Van de Vyver,			participation to improve system	Emission cost
L.			in five different		T.L.			security and	constraint.
Afonso			modes which includes		Vandoo rn, B.			reduction in emission cost is	
			charging		Meersm			presented. A	
			vehicles and dispatching		an, J. Desmet,			heuristics-based optimization	
			power either from V2G and		and L. Vandev			methodology for a day-ahead unit	
			G2V.Also,		elde			commitment	
			based on the available					(UC) model in microgrids is	
			research theory,					proposed. The	
			advantages, benefits and					model aims to schedule the	
			control					power among	
			strategies of proposed smart					the different microgrid units	
			grid model are elaborately					while minimizing the	
			described.					operating costs	
Z. Bie,	2016	[33]	In this research,	Power				together with the CO2 emissions	
H. Xie,	2010	[55]	a novel optimal	balance,				produced	
G. Hu,			scheduling is	Ramp	M. Ban,	2017	[36]	In this research,	power

J. Yu,			a solution for	balance				solved.	
M.			imbalance	constraints	H. Li,	2017	[39]	This paper	Grid power
Shahide			between supply	ramping	A. T.			presents a new	exchange
hpour,			and demand is	up/down	Eseye,			algorithm called	limits,
and Y.			provided by	limits, unit	J.			as regrouping	Demand-
Yao			using benders	generation	Zhang,			swarm	supply
			decomposition method. The	limits, spinning	and D. Zheng			optimization to improve	balance, ESS units
			power	reserve	Zneng			performance by	charging/dis
			imbalance	1050110				simulating the	charging charging
			between utility					system over a	power limits,
			and demand is					day and results	ESS units
			absolutely					are recorded	dynamic
			handled by P2H					with and without	operation
			technology which converts					wind penetration .The system can	performance
			excess wind					effectively use	
			power by					for	
			electrolysis					commercializati	
			process. The					on of power.	
			ultimate result					Performance	
			of this combination					objective includes	
			with G2P					includes minimization of	
			facilitate					fuel cost,	
			accumulation of					operation and	
			excess wind					maintenance	
			power.					cost.	
S.	2017	[37]	In this research,	Ramp-up	J. Meus,	2018	[40]	In this research,	System
Chandra shekar,			benefits of flexible	constraints, charger	K. Poncele			fast	Constraints,
Y. Liu,			charging hours	capacity,	t, and E.			approximation solution to UC	Technologic al
and R.			on the wind	state-	Delarue			problem is	constraints
Sioshan			uncertainties	transition				provided by	
si			and variability is	logic				grouping similar	
			given to reduce					plants into	
			the cost while					clusters such	
			charging all times. In this					that the binary commitment	
			article various					variables are	
			span of V2G					replaced by a	
			and G2G is					single integer	
			presented which					variable. This	
			is to be					grouping helps	
			effectively utilized so that					to convert	
			consumer can					binary commitment	
			earn more profit					variables into a	
			from power sell.					single integer	
A.	2017	[38]	In this research,	Charging				variable. This	
Babin,			solution to	and				method	
N. Rizoug,			battery charging for reducing the	Discharging Constraints				combines CUC with	
Rizoug, T.			cost has been	Constraints				conventional	
Mesbah			implemented in					UC to reduce	
i, D.			a software tool.					errors	
Boscher			Problems related					introduced due	
, Z.			to aging, battery					to problem	
Hamdo			sizing in commercial					formulation and	
un, and C.			electric vehicle					grouping of non- identical units	
C. Larouci			(EV) using					and provide a	
			intelligent					feasible and	
			charging so as to					optimal solution.	
			increase total		J. Liu,	2018	[41]	In this research,	Minimum
			cost of consumer are		C. D.			convergence	uptime and
			effectively		Laird, J. K.			rate and solution quality is	downtime constraints
		1	encenvery		IX.	1		quanty is	constraints

Scott, J. P. Watson, and A. Castillo			improved by building an algorithm. An attempt is made to find an global optimal solution but lacks in capturing desired computational time. However, except computational time, the algorithm efficiently solves the UC- AC problem.	spinning reserve constraint, startup/shutd own costs	Li, and B. M. Hodge			which shows mapping of individual unit commitment status with CCGTs. The hybrid model consists of combined-cycle gas turbines which provides excellent operational flexibility, better response to sustainable sources, ability to generate more	ramping rates
F. H. Aghda m and M. T. Hagh	2018	[42]	In this research, problems of transmission lines and operation constraints including MUT/MDT and emission limits are analyzed using MICA algorithm. In this method, basic algorithm uses priority list (PL) method to define initial state. The system is tested on IEEE-30 bus and 118-bus system	Minimum uptime and downtime constraints spinning reserve constraint, startup/shutd own costs	C. Zhu, F. Lu, H. Zhang, and C. C. Mi	2018	[45]	power compare to conventional method. In this research, temperature sensitive nature of lithium-ion batteries, finite robust predictive strategy is presented for reduce heat effect to damage system. Further proposed method facilitate to predict future temperature forecast and enables to provide flexibility to	Heating and cooling constraints, Unit generation limits
A. Yazdan doost, P. Khazaei , R. Kamali, and S. Saadatia n	2018	[43]	In this research, generating schedule is controlled to minimize the total operating cost by introducing modified genetic algorithm based on multicellular organism's mechanisms. This algorithm combines the features of GA and modified GAMOM. The effectiveness of the scheme is validated through the nature of	Power Balance, Generating Units limitation, Ramp up and down limitation, Startup and shutdown Constraints, Voltage and Angle constraints.	S. Maghsu dlu and S. Moham madi X. Chen,	2018	[46]	driving profiles. This research presents a novel stochastic Monte Carlo optimization algorithm to handle uncertainties of solar power. This study includes the investigations in presence of EV and PV. Also, an efficient balance is seen between uncertain energy source and EV system. This paper presents	Generation limits, Vehicle balance Penetration level of
X. Fang, L. Bai, F.	2018	[44]	convergence curve. In this paper, a hybrid model is developed	Minimum online/offlin e time and	M. B. Mcelroy , Q. Wu, Y. Shu,			practical barriers while dealing with operation of collaborative functioning of	renewables, Emission Constraints

and Y. Xue			uncertain distributed generation and simultaneously maintaining emission and environmental constraints within limit.					properly utilized to tackle problems related to environmental pollution. Frequency deviation due to EV power	
T. K. Renuka, P. Reji, and S. Sreedha ran,	2018	[48]	This paper presents a multistage PSO method for improving both the energy penetration and small signal stability. This method is tested on IEEE 14-bus at 220 KV practical system with the solar and wind power. The program is carried out in two stages. In first stage renewable penetration is addressed while in second stage stability issue is handled.	Equality constraints, Inequality constraints, Fast voltage stability indices, Line stability index	J. B. Mogo and I. Kamwa	2019	[51]	output is handled by V2G technology. This paper presents a security constraint unit commitment is implemented and effectively reduces burden of spinning reserve on spinning reserve requirement on conventional sources by utilizing wind power as a reserve using mixed integer programming thereby reducing the overall operating cost.	Ramping reserve limits, spinning reserve capacity limit.
T. Ghose, H. W.Pand ey, K. R. Gadham	2019	[49]	This paper describes about two risk assessment techniques which predicts the option of providing power either according to demand response or renewable energy source. The main objective of this research is to focus mainly on financial risk of aggregators while maintaining the conditions of technical aspects of microgrids.	Minimum and maximum capacity of the DR, minimum and maximum durations of load recovery.	Z. Yang, K. Li, Y. Guo , S. Feng , Q. Niu , Y. Xue , A.Foley	2019 MATHE	[6]	The paper presents a binary symmetric method which solves the complexity of hybrid system in presence of uncertain sources and electric vehicles. Particle swarm optimization algorithm is utilized to provide flexible charging/dischar ging patterns thereby reducing the cost of generation and emission.	Generation limit, Power demand limit, Power reserve limit, Minimum up/down time limit
M. Bayati, M. Abedi, G. B. Ghareh petian, and M. Farahm andrad	2019	[50]	In this research, EV power output effects on the conventional fuel cost is presented in very lucid manner. Also, benefits of EV technologies are	Power balance, Charging /Discharging constraints	The obj schedule total op generati within c	ective of the of availated ection of availated ectional and the ection of the ection o	unit cor able ge nd geno s fuel c limit.	nmitment is to pl nerating units to eration cost. Total ost, shut down and e as follows:	an the optimal minimize the cost of power

3.1 Operating Cost

The operating cost of i^{th} at h^{th} hour and can be represented as below:

$$F_{hi} = (a_i P_{hi}^2 + b_i P_{hi} + c_i) U_{hi} + SUC_{hi} (1 - U_{(h-1)i}) U_{hi}$$

$$(₹/h)$$

$$(i = 1, 2, ..., NG; hr = 1, 2, ..., H)$$
(1a)

Where, Fhi is the cost associated with the ith generating unit at hth hour and a_i , b_i and c_i are its fuel and operational cost coefficients, U_{hi} and U (h-1)i is the committed status of the ith unit at hth hour and (h-1)-th hour respectively, SUC_{hi} is the start-up cost of ith unit at hth hour

Combined cost (F_h) , for all the generating units (NG) at a particular hour 'h' can be obtained as the sum total of all the individual units 'costs:

$$F_{hr} = \sum_{i=1}^{NO} \left[(a_i P_{hi}^2 + b_i P_{hi} + c_i) U_{hi} + SUC_{hi} (1 - U_{(h-1)i}) U_{hi} \right] \sum_{i=1}^{NO} P_{hri} U_{hri} + P_{hr}^{Sustainable} = D_{hr} + D_{hr}^{Vehicle} \quad (hr = 1, 2, ..., H)$$
(4b)

$$\mathbf{E}/\mathbf{h} \text{ (hr = 1, 2, ..., H)}$$
(1b)

Now, the total fuel cost F is the double summation of the costs incurred for all the generators for all the time periods considered. It can be mathematically represented as:

$$F = \sum_{h=1}^{H} \left(\sum_{i=1}^{NG} \left[(a_i P_{hi}^2 + b_i P_{hi} + c_i) U_{hi} + SUC_{hi} (1 - U_{(h-1)i}) U_{hi} \right]$$

(₹/h) (hr =1, 2... H) (1c)

Mathematically, startup cost (SUC_{hi}) can be expressed as:

$$SupC_{hi} = \begin{cases} HSC_{i}; & M Dt_{i} \le T_{hi}^{OFF} \le (M Dt_{i} + CsH_{i}) \\ CSc_{i}; & T_{hi}^{OFF} > (MDT_{i} + CsH_{i}) \end{cases}$$

(*i* = 1, 2, ..., *NG*; *hr* = 1, 2, ..., *H*) (2)

where, CSc_i and HSC_i are cold startup and hot start-up cost of i-th unit respectively and MDt_i is the minimum down time of i-th unit, T_{hi}^{OFF} is duration for which the i-th thermal unit has been continuously off until hour h. CSH_i is the cold start hour of i-th unit. The start-up cost for a unit depends on its downtime. If it is longer than the related MDt plus its predefined Cold-Start Hours (CsH), Cold-Start Cost (CSc) is needed to operate it. Else if the i-th unit down time is shorter than the mentioned duration, Hot-Start cost (HSC) is needed to operate it. The Various Constraints linked with unit commitment problem are explained below.

Maximum (max) and Minimum (min) Operating Limits of Generators

Every unit has its own maximum/minimum power level of generation, beyond and below which it cannot generate.

$$P_{i(\min)} \le P_{hri} \le P_{i(\max)}$$
 $(i = 1, 2, ..., NG; hr = 1, 2, ..., H)$

(3)

Load Balance Constraints

The load balance or system power balance constraint requires that the sum of generation of all the committed units at hth hour must be greater than or equal to the demand Dh at a particular hour 'h'.

$$\sum_{i=1}^{NG} P_{hri} U_{hri} + P_{hr}^{Sustainable} = D_{hr} \qquad (hr = 1, 2, ..., H)$$
(4a)

Case-1: During Charging of Vehicle

Case-2: During Discharging

$$\sum_{i=1}^{NG} P_{hri} U_{hri} + P_{hr}^{Sustainable} + D_{hr}^{Vehicle} = D_{hr} \qquad (hr = 1, 2, ..., H)$$
(4c)

Above eqn.(4) does not contain power loss in the system. If hourly power loss Ph_L is considered, then eqn.(4) can be modified as:

$$\sum_{i=1}^{NG} P_{hri} U_{hri} + P_{hr}^{Sustainable} = D_h r + P_{hrL} \qquad (hr = 1, 2, ..., H) (5a)$$

Case-1: During Charging of Vehicle

$$\sum_{i=1}^{NG} P_{hri} U_{hri} + P_{hr}^{Sustainable} = D_{hr} + P_{hrL} + D_{h}^{Vehicle} \qquad (hr = 1, 2, ..., H)$$
(5b)

Case-2: During Discharging

$$\sum_{i=1}^{NG} P_{hri}U_{hri} + P_{hr}^{Sustainable} + D_{hr}^{Vehicle} = D_{hr} + P_{hrL} \qquad (hr = 1, 2, ..., H)$$
(5c)

The power generation of the NG generating units at a particular time horizon handles theload balance constraint and other operating limit constraints. To satisfy the equality constraints, one unit is designated as reference unit and its power generation is decided as follows: For any arbitrarily available unit output power generation(Phi), $P_{i(\min)} \leq P_{hri} \leq P_{i(\max)}$, (i=1,2,...,NG), it is assumed that power output available at the Rth unit t is constrained by the load(power) balance equation as:

$$P_{hrR} = D_{hr} + P_{hrL} - \sum_{\substack{i=1\\i \neq R}}^{NG} (P_{hri} + P_{hr}^{Sustainable}) \qquad (hr = 1, 2, ...,$$
(6a)

Case-1: During Charging of Vehicle

$$P_{hrR} = D_{hr} + P_{hrL} - \sum_{\substack{i=1\\ i\neq R}}^{NG} (P_{hri} + P_{hr}^{Sustainable} - D_{hr}^{Vehicle}) \quad (hr = 1, 2, ..., H)$$

(6b) Case-2: During Discharging

$$P_{hrR} = D_{hr} + P_{hrL} - \sum_{\substack{i=1\\i \neq R}}^{NG} (P_{hri} + P_{hr}^{Sustainable} + D_{hr}^{Veh}) \quad (hr = 1, 2, ..., H)$$
(6c)

Reserve Power (Spinning) Constraints

To deal with unpredictable disturbances (interruption of generation and transmission lines or unexpected increase in demand) certain amount of reserve capacity must be always available. This excess capacity of generation is known as Spinning Reserve(Rs) and mathematically given as:

$$\sum_{i=1}^{NG} P_{i(\max)} U_{hi} + P_{hr}^{Sustainable} \ge D_{hr} + R_{shr} \qquad (hr = 1, 2, ..., H)$$
(7a)

Case-1: During Charging of Vehicle

$$\sum_{i=1}^{NG} P_{i(\max)} U_{hri} + P_{hr}^{Sustainable} \ge D_{hr} + R_{shr} + D_{hr}^{vehicle} \qquad (hr = 1, 2, ..., H)$$
(7b)

Case-2: During Discharging

$$\sum_{i=1}^{NG} P_{i(\max)} U_{hi} + P_{hr}^{Sustainable} \ge D_{hr} + R_{shr} - D_{hr}^{Vehicle} \qquad (hr = 1, 2, ..., H) (7c)$$

Thermal Constraints

A thermal constraint includes (a) minimum up time i.e. time required to turn-on a unit from shunt down condition (b) Minimum down time i.e. time required to turn –off already running units and (c) crew constraints i.e. limitations of crew members to attend more than one unit at the same time. These constraints may result in many hurdles in the operation of thermal units.

Minimum-up Time

Mathematically expressed as:

$$T_{hi}^{ON} \ge MUt_i$$
 $(i = 1, 2, ..., NG; hr = 1, 2, ..., H)$ "

(8a)

Where, T_{hi}^{ON} is time interval for which ith unit is continuously ON (in hrs) and MUt_i is its minimum up time (in hrs).

Minimum-down Time

H)

Mathematically expressed as:

$$T_{hri}^{OFF} \ge MDt_i$$
 $(i = 1, 2, ..., NG; hr = 1, 2, ..., H)$ (8b)

where, T_{hri}^{OFF} is time interval for which ith unit is continuously OFF (in hrs) and MDt_i is it's minimum down time (in hrs).

Crew Constraints

If a plant consists of two or more units, there may not be enough crewmembers to attend all the units simultaneously while starting up.

Initial Operating Status of Generating Units

Its decides minimum up /down time satisfaction of

every unit depending upon data of last day's previous

schedule

4. Constraints Repairing Mechanism

The flowchart for constraint handling mechanism during charging and discharging phase has been depicted below. The Fig.1 shows the constraint handling mechanism for UCP minimum up and down time. And Fig.2 represents the constraints handling mechanism for spinning reserve requirements.

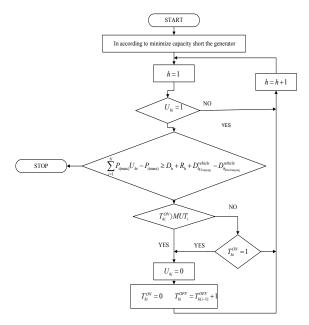
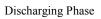
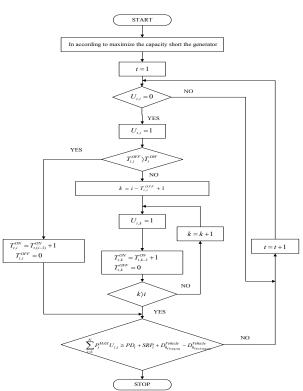




Fig.1: Handling of MDT and MUT during charging and

Fig.2: Fulfillment of spinning reserve requirements during charging and Discharging Phase

5. SCOPE OF RESEARCH

The analysis of present review suggest that UC problem is aimed at determining the turn-On and turn -off schedules of thermal units to meet forecasted demand for a certain time interval and belongs to a combinatorial optimization problem. Further, it is clear that optimization falls roughly into three categories: heuristic search, mathematical programing, and hybrid methods. There are several optimization strategies employed to solve the complexity of generation scheduling and dispatch problem. Some of these methods are the, Bat Algorithm, Binary Gravitational Search Algorithm, Backtracking Search Optimization, Colliding Bodies Optimization, , Chaotic Krill Herd Algorithm, Dynamic Programming, Dragonfly Algorithm, Fireworks Algorithm, Flower Pollination Algorithm, Grey Wolf Optimizer, Imperialist Competitive Algorithm, , Mine Blast Algorithm, Optics Inspired Optimization, Random Walk Grey Wolf Optimizer, Simulated Annealing, Sine Cosine Algorithm, Search Group Algorithm, Symbiotic Organisms Search, Salp Swarm Algorithm, Virus Colony Search, Water Cycle Algorithm, Water Wave Optimization, etc.

From the research paper listed above in Table-1 and research problem, it have been seen that great efforts are taken for achieving economic load dispatch and unit commitment problem using different methodologies, but there needs some more considerable efforts are made to find solution for global optimized solution (within local and global search space) for cost effective solution for unit commitment problem for vehicle to grid operation in sustainable energy environment, which seriously affects the optimality of the results. Also, it is clear from the literatures, appreciable efforts are made to solve the unit commitment problem using various meta-heuristics optimization methodologies, but no significant efforts are made to find out the global optimization search algorithm by combining local and global search capability of algorithm to get more improved results. Further, research theorem has logically suggested that none of the optimization algorithm is able to provide exact solution to all types of optimization problems efficiently. In other words, there is always scope of improvements to upgrade current techniques to better solve maximum optimization problems efficiently.

In recent research studies pertaining to optimization algorithm, it has been reported that swarm intelligence optimization have some drawbacks and need advanced solutions. Another important concern in swarm intelligent algorithm is regarding exploration, exploitation and convergence. In practical application, it creates serious problem. This motivated our attempts to propose yet another memetic solution of with due consideration of sustainable energy sources along with vehicle to grid concept.

6. Conclusion And Future Scope

In the proposed research, the authors has successfully presented the scope of solution intelligence solution strategies for effective vehicle to grid operation for unit commitment problem with due consideration of sustainable energy sources. Further, Electric vehicles are getting popularity due to eco-friendly nature and could be a part of power sector in the future. Thus, proposed research explores the concept of modern smart grid system along with effective solution strategies. It is recommended that, in order to explore the scope of intelligence approaches in future learning, the following future work may be taken into consideration:

- Consideration of memetic intelligence approaches for cost effective solution of unit-commitment due consideration of uncertainty of sustainable power and vehicle to grid operations.
- Development of hybrid optimization algorithm by combing local search algorithm with modern global search algorithm for constrained optimization problem can be explored and its performance testing can be made on various standard unimodal, multi model, fixed dimension and engineering benchmark problems.
- Simulation environment can be created for implementation of unit commitment problem of electric power system with due consideration of Vehicle to Grid operation in stochastic sustainable environment energy environment

• Testing and validation of proposed memetic intelligence algorithm can be explored for various IEEE benchmarks problems with incorporation of V2G operations in stochastic sustainable environment.

References

- A. Bhadoria, V. K. Kamboj, M. Sharma, and S. K. Bath, "A Solution to Non-convex/Convex and Dynamic Economic Load Dispatch Problem Using Moth Flame Optimizer," Ina. Lett., vol. 3, no. 2, pp. 65–86, (2018).
- M. Esmaeeli, S. Golshannavaz, and P. Siano, "Determination of optimal reserve contribution of thermal units to afford the wind power uncertainty," J. Ambient Intell. Humaniz. Comput., vol. 11, no. 4, pp. 1565–1576, (2020).
- 3. C. De Jonghe, E. Delarue, R. Belmans, and W. D'haeseleer, "Determining optimal electricity technology mix with high level of wind power penetration," Appl. Energy, vol. **88**, no. 6, pp. 2231–2238, (2011).
- M. S. Shahriar, M. J. Rana, M. A. Asif, M. M. Hasan, and M. M. Hawlader, "Optimization of Unit Commitment Problem for wind-thermal generation using Fuzzy optimization technique," in Proceedings of 2015 3rd International Conference on Advances in Electrical Engineering, ICAEE 2015, pp. 88–92(2015).
- M. Wang *et al.*, "A preventive control strategy for static voltage stability based 92(2016on an efficient power plant model of electric vehicles," J. Mod. Power Syst. Clean Energy, vol. 3, no. 1, pp. 103–113, (2015).
- Z. Yang *et al.*, "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, vol. 170, pp. 889–905,(2019).
- W. L. Snyder, H. D. Powell, and J. C. Rayburn, "Dynamic Programming Approach to Unit Commitment," IEEE Power Eng. Rev., vol. PER-7, no. 5, pp. 41–42, (1987).
- 8. S. Virmani, E. Adrian, ... K. I.-I. T. on, and undefined 1989, "Implementation of a Lagrangian relaxation based unit commitment problem," ieeexplore.ieee.org (1989)
- V. K. Kamboj, S. K. Bath, and J. S. Dhillon, "Implementation of hybrid harmony/random search algorithm considering ensemble and pitch violation for unit commitment problem," Int. J. Electr. Power Energy Syst., vol. 77, pp. 228–249, (2016).
- A. Y. Saber and G. K. Venayagamoorthy, "Unit commitment with vehicle-to-grid using particle swarm optimization," 2009 IEEE Bucharest PowerTech Innov. Ideas Towar. Electr. Grid Futur., pp. 1–8, (2009).
- 11. S. A. Kazarlis, "A genetic algorithm solution to the unit commitment problem", IEEE Transactions on

Power Systems, pp. 83 -92, (1996).

- 12. V. N. Dieu and W. Ongsakul, "Ramp rate constrained unit commitment by improved priority list and augmented Lagrange Hopfield network," *Electr. Power Syst. Res.*, vol. 78, no. 3, pp. 291–301, (2008).
- 13. M. Singh, I. Kar, and P. Kumar, "Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss," Proc. EPE-PEMC 2010 - 14th Int. Power Electron. Motion Control Conf., pp. 196– 203, (2010).
- 14. B. Palmintier and M. Webster, "Impact of unit commitment constraints on generation expansion planning with renewables," IEEE Power Energy Soc. Gen. Meet., pp. 1–7,(2011).
- S. Kamboj, W. Kempton, and K. S. Decker, "Deploying Power Grid-Integrated Electric Vehicles as a Multi-Agent System," Proc. 10th Int. Conf. Auton. Agents Multiagent Syst. – Innov. Appl. Track (AAMAS 2011), no. Aamas, pp. 13– 20, (2011).
- G. O. Suvire, M. G. Molina, and P. E. Mercado, "Improving the integration of wind power generation into AC microgrids using flywheel energy storage," IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1945–1954, (2012).
- A. Foley, B. Tyther, P. Calnan, and B. Ó Gallachóir, "Impacts of Electric Vehicle charging under electricity market operations," Appl. Energy, vol. 101, no. 2013, pp. 93–102, (2013).
- P. K. Roy, "Solution of unit commitment problem using gravitational search algorithm," Int. J. Electr. Power Energy Syst., vol. 53, no. 1, pp. 85–94, (2013).
- L. Liu, H. Li, Y. Xue, and W. Liu, "Reactive power compensation and optimization strategy for grid-interactive cascaded photovoltaic systems," IEEE Trans. Power Electron., vol. 30, no. 1, pp. 188–202, (2015).
- 20. M. E. El-Hawary, "The smart grid State-of-theart and future trends," Electr. Power Components Syst., vol. **42**, no. 3–4, pp. 239–250, (2014).
- P. B. Luh *et al.*, "Grid Integration of Distributed Wind Generation: Hybrid Markovian and Interval Unit Commitment," IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 732–741, (2014).
- 22. V. K. Kamboj, S. K. Bath, and J. S. Dhillon, "A novel hybrid DE-random search approach for unit commitment problem," Neural Comput. Appl., vol. 28, no. 7, pp. 1559–1581, (2017).
- C. CHEN and S. DUAN, "Microgrid economic operation considering plug-in hybrid electric vehicles integration," J. Mod. Power Syst. Clean Energy, vol. 3, no. 2, pp. 221–231,(2015).
- H. LIU, P. ZENG, J. GUO, H. WU, and S. GE, "An optimization strategy of controlled electric vehicle charging considering demand side response and regional wind and photovoltaic," J. Mod. Power Syst. Clean Energy, vol. 3, no. 2, pp. 232–239, (2015).
- 25. S. Umamaheswaran and S. Rajiv, "Financing large

scale wind and solar projects - A review of emerging experiences in the Indian context," Renew. Sustain. Energy Rev., vol. **48**, pp. 166–177, (2015).

- N. Zhang, Z. Hu, X. Han, J. Zhang, and Y. Zhou, "A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power," Int. J. Electr. Power Energy Syst., vol. 65, pp. 201–209, (2015).
- 27. K. S. Reddy, L. K. Panwar, and R. Kumar, "Potential benefits of electric vehicle deployment as responsive reserve in unit commitment," 9th Int. Conf. Ind. Inf. Syst. ICIIS 2014, (2015).
- L. Yang, J. Jian, Z. Dong, and C. Tang, "Multi-Cuts Outer Approximation Method for Unit Commitment," IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1587–1588,(2017).
- 29. W. S. Tan and M. Shaaban, "A Hybrid Stochastic/Deterministic Unit Commitment Based on Projected Disjunctive MILP Reformulation," IEEE Trans. Power Syst., vol. **31**, no. 6, pp. 5200–5201, 2016.
- R. Á. Fernández, F. B. Cilleruelo, and I. V. Martínez, "A new approach to battery powered electric vehicles: A hydrogen fuel-cell-based range extender system," Int. J. Hydrogen Energy, vol. 41, no. 8, pp. 4808–4819, (2016).
- K. S. Reddy, L. K. Panwar, R. Kumar, and B. K. Panigrahi, "Distributed resource scheduling in smart grid with electric vehicle deployment using fireworks algorithm," J. Mod. Power Syst. Clean Energy, vol. 4, no. 2, pp. 188–199, (2016).
- 32. V. Monteiro, J. G. Pinto, and J. L. Afonso, "Operation Modes for the Electric Vehicle in Smart Grids and Smart Homes: Present and Proposed Modes," IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007–1020, (2016).
- Srinivas Rao J., Srinivasa Varma, P., Suresh Kumar. T, International Journal of Power Electronics and Drive Systems, vol.9, no.3, pp. 1202-1213, (2018).
- E. S. Ali, S. M. Abd Elazim, and A. Y. Abdelaziz, "Ant Lion Optimization Algorithm for renewable Distributed Generations," Energy, vol. 116, pp. 445–458, (2016).
- C. Deckmyn, J. Van de Vyver, T. L. Vandoorn, B. Meersman, J. Desmet, and L. Vandevelde, "Dayahead unit commitment model for microgrids," IET Gener. Transm. Distrib., vol. 11, no. 1, pp. 1– 9, (2017).
- 36. M. Ban, J. Yu, M. Shahidehpour, and Y. Yao, "Integration of power-to-hydrogen in day-ahead security-constrained unit commitment with high wind penetration," J. Mod. Power Syst. Clean Energy, vol. 5, no. 3, pp. 337–349, (2017).
- S. Chandrashekar, Y. Liu, and R. Sioshansi, "Wind-integration benefits of controlled plug-in electric vehicle charging," J. Mod. Power Syst. Clean Energy, vol. 5, no. 5, pp. 746–756, (2017).
- 38. A. Babin, N. Rizoug, T. Mesbahi, D. Boscher, Z. Hamdoun, and C. Larouci, "Total Cost of

Ownership Improvement of Commercial Electric Vehicles Using Battery Sizing and Intelligent Charge Method," IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1691–1700, (2018).

- H. Li, A. T. Eseye, J. Zhang, and D. Zheng, "Optimal energy management for industrial microgrids with high-penetration renewables," Prot. Control Mod. Power Syst., vol. 2, no. 1, pp. 1–14, (2017).
- 40. J. Meus, K. Poncelet, and E. Delarue, "Applicability of a Clustered Unit Commitment Model in Power System Modeling," IEEE Trans. Power Syst., vol. **33**, no. 2, pp. 2195–2204, (2018).
- J. Liu, C. D. Laird, J. K. Scott, J. P. Watson, and A. Castillo, "Global Solution Strategies for the Network-Constrained Unit Commitment Problem with AC Transmission Constraints," IEEE Trans. Power Syst., vol. 34, no. 2, pp. 1139–1150, (2019).
- 42. F. H. Aghdam and M. T. Hagh, "Security Constrained Unit Commitment (SCUC)formulation and its solving with Modified Imperialist Competitive Algorithm (MICA)," J. King Saud Univ. - Eng. Sci., vol. **31**, no. 3, pp. 253–261, (2019).
- A. Yazdandoost, P. Khazaei, R. Kamali, and S. Saadatian, "An Efficient Scheduling for Security Constraint Unit Commitment Problem Via Modified Genetic Algorithm Based on Multicellular Organisms Mechanisms," World Autom. Congr. Proc., vol. 2, pp. 58–63, (2018).
- 44. X. Fang, L. Bai, F. Li, and B. M. Hodge, "Hybrid component and configuration model for combined-cycle units in unit commitment problem," J. Mod. Power Syst. Clean Energy, vol. **6**, no. 6, pp. 1332–1337, (2018).
- 45. C. Zhu, F. Lu, H. Zhang, and C. C. Mi, "Robust predictive battery thermal management strategy for connected and automated hybrid electric vehicles based on thermoelectric parameter uncertainty," IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 4, pp. 1796–1805, (2018).
- 46. S. Maghsudlu and S. Mohammadi, "Optimal scheduled unit commitment considering suitable power of electric vehicle and photovoltaic uncertainty," J. Renew. Sustain. Energy, vol. 10, no. 4, (2018).
- X. Chen, M. B. Mcelroy, Q. Wu, Y. Shu, and Y. Xue, "Transition towards higher penetration of renewables: an overview of interlinked technical, environmental and socio-economic challenges," J. Mod. Power Syst. Clean Energy, vol. 7, no. 1, (2019).
- 48. T. K. Renuka, P. Reji, and S. Sreedharan, "An enhanced particle swarm optimization algorithm for improving the renewable energy penetration and small signal stability in power system," Renewables Wind. Water, Sol., vol. **5**, no. 1, (2018).
- 49. T. Ghose, H. W. Pandey, and K. R. Gadham, "Risk assessment of microgrid aggregators considering demand response and uncertain renewable energy sources," J. Mod. Power Syst. Clean Energy, vol.

7, no. 6, pp. 1619–1631, (2019).

- 50. M. Bayati, M. Abedi, G. B. Gharehpetian, and M. Farahmandrad, "Short-term interaction between electric vehicles and microgrid in decentralized vehicle-to-grid control methods," Prot. Control Mod. Power Syst., vol. **4**, no. 1, (2019).
- Mod. Power Syst., vol. 4, no. 1, (2019).
 51. J. B. Mogo and I. Kamwa, "Improved deterministic reserve allocation method for multi-area unit scheduling and dispatch under wind uncertainty," J. Mod. Power Syst. Clean Energy, vol. 7, no. 5, pp. 1142–1154, (2019).