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Abstract. In this paper, a mathematical model for predicting the stress –strain and moment curvature 
relations in concrete is developed. A good number of empirical equations were proposed to represent 
stress-strain behaviour of conventional concrete. Most of the equations can be used for the ascending 
portion of the curve only. In 1997 Mansur et al. have adopted Carriera and Chu (1985) model, which 
was based on the model proposed by Popovics (1973). As such, model proposed by Mansur et al includes 
both ascending and descending portions of the stress-strain curve for the confined concrete with 
introduction of two constants for the descending portion of the curve. Several researchers proposed 
various empirical equations for stress-strain behaviour as briefly reported in the previous chapter. An 
attempt has been made in this study to develop mathematical models for concrete in unconfined state. 
These analytical equations can be applied to any concrete with slight modifications. These models are 
developed to validate the experimental values obtained.  

1 Introduction 
Graph obtained by drawing a curve for the values of 
stresses and strains obtained during testing a material 
specimen of materials is called a stress - strain curve. By 
testing cylinders of standard size made with concrete, 
under uni-axial compression values of stresses and 
strains are obtained and the stress-strain curves are 
plotted. Even though the stress strain relation for cement 
paste and aggregate when tested individually is 
practically linear, it is observed from the stress-strain 
plots of concrete that, no portion of the curves is in the 
form of a straight line. In concrete the rate of increase of 
stress is less than that of increase in strain because of the 
formation of micro cracks, between the interfaces of the 
aggregate and the cement paste. Thus the stress strain 
curve is not linear. In conventional concrete the value of 
stress is maximum corresponding to a strain of about 
0.002 and further goes on decreasing with the increasing 
strain, giving a dropping curve till it terminates at 
ultimate crushing strain. 
 
2 Analytical Stress-strain equations  
Number of empirical equations for stress-strain curve 
has been proposed for conventional concrete. Early 

works done by Hognestad and Desayi and Krishnan and 
proposed a basic model for stress-strain of ordinary 
concrete. Later Saenz has proposed model duly 
overcoming the limitation in the model of Desayi and 
Krishnan. Carriera and Chu [7] provided an extension to 
the empirical equation proposed by Popovics. Further, 
Loove improves the early work by Carriera and Chu 
who proposed a model that can be validate experimental 
values. Collins et al. also extended the work by 
Thorenfeldt et al. to examine the relation between 
compressive stresses at any strain to peak stress. Stress-
strain equations proposed by these authors are 
summarized in the following sections. 
 
Hognestad Model 
Stress-strain relation for ordinary concrete upto 
ascending portion of stress-strain curve defined by 
𝜎𝜎𝑐𝑐
𝑓𝑓𝑐𝑐 

= [2𝜀𝜀
𝜀𝜀0

− ( 𝜀𝜀
𝜀𝜀0

)
2

]  
Where 
𝜎𝜎𝑐𝑐 = Peak stress in concrete, 
𝜀𝜀0= strain at peak stress, 
𝑓𝑓𝑐𝑐 = compressive strength of concrete 
𝜀𝜀 = strain in concrete 
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Desayi and Krishnan Model  
Desayi and Krishnan proposed simple model describing 
stress-strain for normal concrete as below 

𝑓𝑓𝑐𝑐
𝑓𝑓𝑐𝑐′ =

( 𝜀𝜀
𝜀𝜀0

) 𝐴𝐴

𝐴𝐴 + 𝐵𝐵 ( 𝜀𝜀
𝜀𝜀0

)
2 

Model is derived from Saenz’s original equation is in 
simple form such that closed-form integration can be 
evaluated to calculate the stress-block parameters. Due 
to simplicity in model formulation has encouraged many 
researchers to use it as general stress-strain model for 
concrete. 
Modified saenz model 
Desayi and Krishnan has proposed model for ascending 
portion of stress-strain curve only. In view of this 
limitation, Saenz proposed a model considering both 
ascending and descending portion of stress-strain curve. 
 

𝑓𝑓𝑐𝑐
𝑓𝑓𝑐𝑐′ =

( 𝜀𝜀
𝜀𝜀0

) 𝐴𝐴

1 + 𝐵𝐵 ( 𝜀𝜀
𝜀𝜀0

) + 𝐶𝐶 ( 𝜀𝜀
𝜀𝜀0

)
2 

Wang et al. Model 
The model used by Wand et al. in the form  

𝑓𝑓𝑐𝑐
𝑓𝑓𝑐𝑐′ =

( 𝜀𝜀
𝜀𝜀0

) 𝐴𝐴 + 𝐵𝐵 ( 𝜀𝜀
𝜀𝜀0

)
2

1 + 𝐶𝐶 ( 𝜀𝜀
𝜀𝜀0

) + 𝐷𝐷 ( 𝜀𝜀
𝜀𝜀0

)
2 

Carreira and Chu Model 
The following general equation represents the stress-
strain behaviour proposed by Carreria and Chu 

𝑓𝑓𝑐𝑐
𝑓𝑓𝑐𝑐′ =

( 𝜀𝜀
𝜀𝜀0

)𝛽𝛽

𝛽𝛽 − 1 + ( 𝜀𝜀
𝜀𝜀0

)𝛽𝛽
 

Material parameters, 𝛽𝛽 = 1/[1 − ( 𝑓𝑓𝑐𝑐′

𝐸𝐸0𝜀𝜀0
)] 

Where 
V= Initial tangent modulus 
 
Loove Model 
Loove extended the early work by Carriera and Chu and 
proposed as 

𝑓𝑓𝑐𝑐
𝑓𝑓𝑐𝑐′ =

( 𝜀𝜀
𝜀𝜀0

)𝐴𝐴

1 + 𝐶𝐶 ( 𝜀𝜀
𝜀𝜀0

′ ) + 𝐷𝐷( 𝜀𝜀
𝜀𝜀0

)𝑛𝑛
 

Where 
𝑓𝑓𝑐𝑐

′=Cylinder ultimate compressive strength 
A= 1+B+C, C=1/n-1 
Indian Standard IS: 456-2000 allows assumption of 
suitable relationship between the compressive stress 
distribution and strain as rectangular, trapezoidal, 
parabola or any other shape which results in prediction 

of strength followed by substantial agreement with 
experimental results. 
 
3 Mathematical model for Concrete 
In the present investigation only ascending portion of 
curve is considered. Out of existing, Modified Saenz’s 
model is selected which seem to be valid for ascending 
portion of stress strain curve. The proposed equation of 
the curve is in the form of 

𝑌𝑌 = 𝐴𝐴𝑋𝑋
1 + 𝐵𝐵𝑋𝑋 + 𝐶𝐶𝑋𝑋2 

Where Y is the normalized stress ( 𝜎𝜎
𝜎𝜎𝑢𝑢

) and X is the 

normalized strain ( 𝜀𝜀
𝜀𝜀𝑢𝑢

). A, B, C are the constants. Further, 
equation for non-dimensional stress-strain curve can be 
written in the following form 

( 𝜎𝜎
𝜎𝜎𝑢𝑢

) =
𝐴𝐴1( 𝜀𝜀

𝜀𝜀𝑢𝑢
)

1 + 𝐵𝐵1( 𝜀𝜀
𝜀𝜀𝑢𝑢

) + 𝐶𝐶1( 𝜀𝜀
𝜀𝜀𝑢𝑢

)2
 

 
The constants𝐴𝐴1, 𝐵𝐵1, 𝐶𝐶1 are determined from the 
boundary conditions of the non-dimensional stress-
strain curve. The boundary conditions are as follows. 
At the origin, 𝜎𝜎=0 and 𝜀𝜀=0, Slope of the stress-strain 
curve are evaluated using following equations.  
A=𝐴𝐴1(𝜎𝜎

𝜀𝜀), B=𝐵𝐵1(1
𝜀𝜀), and C=𝐶𝐶1(1

𝜀𝜀)2 
Finally, substituting the above constants, theoretical 
equation for the stress-strain curve is obtained for 
concrete. Theoretical stresses are calculated for 
corresponding strains using developed equations. These 
theoretical stresses are compared with experimental 
results of Normal Concrete.  
Boundary conditions for ascending and descending 
portions of stress-strain curves are, 
i. At the origin the ratio of stresses and strains are zero 
i.e. at origin (Є / Є0) = 0, (σ / σ0 ) = 0 
Є0- strain at peak stress, σ0- peak stress 
ii. The strain ratio and stress ratio at the peak of the non-
dimensional stress-strain curve is unity. 
i.e. at (Є / Є0) = 1, (σ / σ0 ) = 1 
iii. The slope of non-dimensional stress-strain curve at 
the peak is 
zero i.e at (Є / Є0) =1.0 d(σ/σ0 ) =0 
d(Є/Є0) 
iv. At 85% stress ratio the corresponding values of strain 
ratio is 1.3. I.e at (σ/σ0 ) = 0.85 (Є/Є0) = 1.3 
Where σ0- corresponds to peak stress and 
Є0 - corresponds to strain at peak stress 
σ and Є corresponds to stress and strain values at any 
other point 
Boundary conditions i and ii are for determining the 
constants in the ascending portion of the normalized 
stress-strain curve and ii, iii and iv are for determining 
the constants in the descending portion of the curve. 

2
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Using the boundary conditions in the non-dimensional 
stress-strain curves, constants for different SCC mixes 
are determined and from that the equations are 
developed. 
 
4 Stress Block Parameter for Normal 
Concrete 
Stress-block parameters are essential for the analysis 
and design of structured members. Using these 
parameters, flexure capacity of beam can be determined. 
If assumed stress-strain model is correct, more 
reliability in strength estimate and deformation 
behaviour of concrete structural members.  
 
Formulation of stress-block parameters 
As fewer studies on stress-strain behaviour on Normal 
Concrete are available, therefore development of stress-
strain model is necessary to judge the flexural behaviour 
of Normal Concrete. Modified Saenz’s model which 
was considered for development of stress-strain curves 
of Normal Concrete. Step by step procedures involved 
in development of stress-block parameters are illustrated 
in subsequent sections. 
The expressions for compressive force is given by 

𝐶𝐶𝑢𝑢 =∝  𝑓𝑓𝑐𝑐𝑢𝑢 𝑏𝑏 𝑋𝑋𝑢𝑢 
The area under stress-strain curve (Ab) is given by 
Ab= ∝ 𝑓𝑓𝑐𝑐𝑢𝑢𝜀𝜀𝑐𝑐𝑢𝑢 
Therefore, 

∝= 𝐴𝐴𝑏𝑏/𝑓𝑓𝑐𝑐𝑢𝑢 ∈𝑐𝑐𝑢𝑢 
Where ∝ is average concrete stress ratio without partial 
safety factor. 
Substituting  
𝐶𝐶𝑢𝑢 = [𝑏𝑏𝑋𝑋𝑢𝑢/𝜀𝜀𝑐𝑐𝑢𝑢] Ab 
Tensile force (T) is expressed as 
T= fy×Ast 
As per Clause 38.1 of IS: 456-2000 

𝜀𝜀𝑠𝑠 = [0.87 ×
𝑓𝑓𝑦𝑦
𝐸𝐸𝑠𝑠

] + 0.002 

Hence, 

𝑓𝑓𝑦𝑦 = 𝐸𝐸𝑠𝑠[𝜀𝜀𝑠𝑠 × 0.002]
0.87  

Substituting  
T=Es[𝜀𝜀𝑠𝑠 − 0.002]/0.87 × 𝐴𝐴𝑠𝑠𝑠𝑠 
Cu and T gives the expression for compressive force and 
tensile force. 
 
Equation for area under stress-strain curve  
Area under stress-strain curve Ab is given by 
=∫ 𝑓𝑓 𝑑𝑑𝑑𝑑 
=∫ 𝐴𝐴𝐴𝐴 

1+𝐵𝐵𝐴𝐴+𝐶𝐶𝐴𝐴2 𝑑𝑑𝑑𝑑 

= 𝐴𝐴
2𝐶𝐶 ∫ 2𝐶𝐶𝐴𝐴+𝐵𝐵−𝐵𝐵

1+𝐵𝐵𝐴𝐴+𝐶𝐶𝐴𝐴2 𝑑𝑑𝑑𝑑 

= 𝐴𝐴
2𝐶𝐶 ∫ 𝐵𝐵+2𝐶𝐶𝐴𝐴

1+𝐵𝐵𝐴𝐴+𝐶𝐶𝐴𝐴2 𝑑𝑑𝑑𝑑 − 𝐴𝐴𝐵𝐵
2𝐶𝐶 ∫ 1

1+𝐵𝐵𝐴𝐴+𝐶𝐶𝐴𝐴2 𝑑𝑑𝑑𝑑 

= 𝐴𝐴
2𝐶𝐶 ∫ 𝐵𝐵+2𝐶𝐶𝐴𝐴

1+𝐵𝐵𝐴𝐴+𝐶𝐶𝐴𝐴2 𝑑𝑑𝑑𝑑 − 𝐴𝐴𝐵𝐵
2𝐶𝐶2 ∫ 1

1
𝐶𝐶+𝐵𝐵

𝐶𝐶𝐴𝐴+𝐴𝐴2 𝑑𝑑𝑑𝑑 

      = 𝐴𝐴
2𝐶𝐶 ∫ 𝐵𝐵+2𝐶𝐶𝐴𝐴

1+𝐵𝐵𝐴𝐴+𝐶𝐶𝐴𝐴2 𝑑𝑑𝜀𝜀 − 𝐴𝐴𝐵𝐵
2𝐶𝐶2 ∫ 1

[𝐴𝐴+( 𝐵𝐵
2𝑐𝑐)]2+4𝑐𝑐−𝐵𝐵2

4𝑐𝑐2
𝑑𝑑𝜀𝜀 

= 𝐴𝐴
2𝐶𝐶 𝐾𝐾1 − 𝐴𝐴𝐵𝐵

2𝐶𝐶2
𝐾𝐾2 

Where 
𝐾𝐾1 = log(1 + 𝐵𝐵𝜀𝜀 + 𝐶𝐶𝜀𝜀2) 

𝐾𝐾2 = ∫ 1
1
𝐶𝐶 + 𝐵𝐵

𝐶𝐶 𝜀𝜀 + 𝜀𝜀2
𝑑𝑑𝜀𝜀 𝑜𝑜𝑜𝑜 𝐾𝐾2

= ∫ 1

[𝜀𝜀 + ( 𝐵𝐵
2𝐶𝐶)]2 + 4𝐶𝐶 − 𝐵𝐵2

4𝐶𝐶2

𝑑𝑑𝜀𝜀 

Solution for 𝐾𝐾2 with ∫ 1
1
𝐶𝐶+𝐵𝐵

𝐶𝐶𝐴𝐴+𝐴𝐴2
𝑑𝑑𝜀𝜀 :- 

It is in the form of ∫ 𝐴𝐴𝐴𝐴+𝐷𝐷
𝑞𝑞+𝑝𝑝𝐴𝐴+𝐴𝐴2 𝑑𝑑𝜀𝜀 𝑖𝑖. 𝑒𝑒. , denominator is 

quadratic irreducible with numerator is constant or 
linear. 
The three solutions for ‘k2  ‘ depending up on 
discriminant i.e., 𝑝𝑝2 − 4𝑞𝑞 
 
Case I :- If 𝑝𝑝2 − 4𝑞𝑞 𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑒𝑒 
=𝐴𝐴∝1+𝐷𝐷

∝1−𝛼𝛼2 ln[𝜀𝜀 − 𝛼𝛼1] + 𝐴𝐴𝛼𝛼2+𝐷𝐷
𝛼𝛼2−𝛼𝛼1

ln  [𝜀𝜀 − 𝛼𝛼2] 

𝛼𝛼1 = −𝑝𝑝 − √𝑝𝑝2 − 4𝑞𝑞
2  , 𝛼𝛼2 = −𝑝𝑝 + √𝑝𝑝2 − 4𝑞𝑞

2  
Substituting 
P=𝐵𝐵

𝐶𝐶 , q=1
𝐶𝐶 

𝛼𝛼1 =
− 𝐵𝐵

𝐶𝐶  − √(𝐵𝐵
𝐶𝐶) 2 − 4 1

𝐶𝐶
2  

=−𝐵𝐵−√𝐵𝐵2−4𝐶𝐶
2𝐶𝐶  , Let Q- √𝐵𝐵2 − 4𝐶𝐶 

=−𝐵𝐵−𝑄𝑄
2𝑐𝑐  

 𝛼𝛼1 = − (𝐵𝐵+𝑄𝑄)
2𝑐𝑐  , 

Similarly 𝛼𝛼2 = − (𝐵𝐵−𝑄𝑄)
2𝑐𝑐  

𝛼𝛼1 − 𝛼𝛼2 = −
(𝐵𝐵 + 𝑄𝑄)

2𝑐𝑐 − [−
(𝐵𝐵 − 𝑄𝑄)

2𝑐𝑐 ] =  − 𝑄𝑄𝐶𝐶 

𝛼𝛼1 − 𝛼𝛼2 = −
(𝐵𝐵 − 𝑄𝑄)

2𝑐𝑐 − [−
(𝐵𝐵 + 𝑄𝑄)

2𝑐𝑐 ] =   𝑄𝑄
𝐶𝐶 

𝜀𝜀 − 𝛼𝛼1 = 𝜀𝜀 − [− (𝐵𝐵+𝑄𝑄)
2𝑐𝑐 ]= 2𝐶𝐶𝐴𝐴+𝐵𝐵+𝑄𝑄

2𝐶𝐶  

Similarly 𝜀𝜀 − 𝛼𝛼2 = 2𝐶𝐶𝐴𝐴+𝐵𝐵−𝑄𝑄
2𝐶𝐶  

Substituting above values and also A=0 , D=1  
= 1

𝑄𝑄
𝐶𝐶

ln[2𝐶𝐶𝐴𝐴+𝐵𝐵+𝑄𝑄
2𝐶𝐶 ] + 1

𝑄𝑄
𝐶𝐶

ln [2𝐶𝐶𝐴𝐴+𝐵𝐵−𝑄𝑄
2𝑐𝑐 ] 

= - 𝐶𝐶
𝑄𝑄 ln[2𝑐𝑐 + 𝐵𝐵 + 𝑄𝑄] + 1

2𝑄𝑄 ln [2𝑐𝑐 + 𝐵𝐵 − 𝑄𝑄] 

𝐾𝐾2 =  𝐶𝐶
𝑄𝑄 𝑙𝑙𝑜𝑜𝑙𝑙 (2𝑐𝑐𝜀𝜀 + 𝐵𝐵 − 𝑄𝑄)

(2𝑐𝑐𝜀𝜀 + 𝐵𝐵 + 𝑄𝑄) 

 
Case II :- If  p2 - 4q is zero 
=A ln[𝜀𝜀 − 𝜎𝜎] − 𝐴𝐴𝐴𝐴+𝐷𝐷

𝐴𝐴−𝐴𝐴  

Substituting , 𝜎𝜎 =  − 𝑝𝑝
2 =  − 𝐵𝐵

2𝐶𝐶  , 𝑎𝑎𝑎𝑎𝑑𝑑 𝐴𝐴 = 0 , 𝐷𝐷 = 1 
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= - 1
𝜀𝜀−(− 𝐵𝐵

2𝐶𝐶)
 

𝐾𝐾2 = − 2𝐶𝐶
2𝐶𝐶𝐶𝐶 + 𝐵𝐵 

 
Case III :- If p2- 4q –ve 
                = 𝐴𝐴2 ln[(𝐶𝐶 − 𝛽𝛽)2 + 𝛾𝛾2] + 𝐴𝐴𝐴𝐴+𝐷𝐷

𝛾𝛾 𝑡𝑡𝑡𝑡𝑡𝑡−1(𝜀𝜀−𝐴𝐴
𝛾𝛾 ) 

Where, 

𝛽𝛽 = − 𝑝𝑝
2 =  − 𝐵𝐵

2𝑐𝑐, 

𝛾𝛾 = √𝑞𝑞 − (𝑝𝑝2

4 ) =√1
𝑐𝑐 − 𝐵𝐵2

4𝐶𝐶2 = √4𝐶𝐶−𝐵𝐵2

2𝐶𝐶  

Substituting 𝛽𝛽, 𝛾𝛾 𝑡𝑡𝑡𝑡𝑎𝑎 𝐴𝐴 = 0, 𝐷𝐷 = 1  
=1

𝛾𝛾 𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝜀𝜀−𝐴𝐴
𝛾𝛾 ) 

= 1

√4𝑐𝑐−𝐵𝐵2
2𝐶𝐶

𝑡𝑡𝑡𝑡𝑡𝑡−1(
𝜀𝜀−(− 𝐵𝐵

2𝐶𝐶)

√4𝐶𝐶−𝐵𝐵2
2𝐶𝐶

) 

= 2𝐶𝐶
√4𝐶𝐶−𝐵𝐵2 𝑡𝑡𝑡𝑡𝑡𝑡−1(

(2𝑐𝑐∈+𝐵𝐵
2𝐶𝐶 )

√4𝐶𝐶−𝐵𝐵2
2𝐶𝐶

) 

K2=
2𝐶𝐶

√4𝐶𝐶−𝐵𝐵2 𝑡𝑡𝑡𝑡𝑡𝑡−1(
(2𝑐𝑐∈+𝐵𝐵

2𝐶𝐶 )

√4𝐶𝐶−𝐵𝐵2
2𝐶𝐶

) 

Solution for K2 With ∫ 1
[𝜀𝜀+( 𝐵𝐵

2𝐶𝐶)2+4𝐶𝐶−𝐵𝐵2
4𝐶𝐶2

𝑎𝑎𝐶𝐶:- 

The three solutions for k2 depending up on “4C-B2” 
 
Case I :- If 4C-B2 is –ve or (B2-4c is +ve) 
Let 4c-B2 = -Q2 
= ∫ 1

[𝜀𝜀+( 𝐵𝐵
2𝐶𝐶)]

2
− 𝑄𝑄2

4𝑐𝑐2
𝑎𝑎𝐶𝐶 

=∫ 1

[𝜀𝜀+( 𝐵𝐵
2𝐶𝐶)]

2
−( 𝑄𝑄

2𝑐𝑐)2
𝑎𝑎𝐶𝐶  

It is in the standard form , ∫ 1
𝑥𝑥2−𝑎𝑎2dX = 1

2𝑎𝑎 ln (𝑋𝑋−𝑎𝑎)
(𝑋𝑋+𝑎𝑎) 

Substitute for  
X=𝐶𝐶 + ( 𝐵𝐵

2𝐶𝐶) & 𝑡𝑡 = ( 𝑄𝑄
2𝐶𝐶) 

= 1
2( 𝑄𝑄

2𝐶𝐶)
ln (𝜀𝜀+( 𝐵𝐵

2𝐶𝐶)−( 𝑄𝑄
2𝐶𝐶))

(𝜀𝜀+( 𝐵𝐵
2𝐶𝐶)+( 𝑄𝑄

2𝐶𝐶))
 

K2=
𝐶𝐶
𝑄𝑄 𝑙𝑙𝑡𝑡 (2𝑐𝑐𝜀𝜀+𝐵𝐵−𝑄𝑄)

(2𝑐𝑐𝜀𝜀+𝐵𝐵+𝑄𝑄) 
 
Case II :- If 4c-𝐵𝐵2 𝑖𝑖𝑖𝑖 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 
Let 4c-𝐵𝐵2 = 0 
=∫ 1

[𝜀𝜀+( 𝐵𝐵
2𝐶𝐶)]2 𝑎𝑎𝐶𝐶 

=4𝑐𝑐2 ∫ 1
[2𝑐𝑐𝜀𝜀+𝐵𝐵]2 𝑎𝑎𝐶𝐶 

Let U=2c𝐶𝐶 + 𝐵𝐵 
𝑎𝑎𝑑𝑑
𝑎𝑎𝐶𝐶 = 2𝐶𝐶 𝑍𝑍𝑍𝑍 𝑎𝑎𝑑𝑑

2𝑐𝑐 = 𝑎𝑎𝐶𝐶 

=4𝑐𝑐2 ∫ 1
[𝑈𝑈]2

𝑑𝑑𝑑𝑑
2𝑐𝑐  

=2c∫ 1
[𝑈𝑈]2 𝑎𝑎𝑑𝑑 

=2c[𝑈𝑈−2+1

−2+1 ] 

=2c[𝑈𝑈−1

−1 ] 
=-2c[ 1

−𝑈𝑈] 
K2=- 2𝐶𝐶

2𝐶𝐶𝐶𝐶+𝐵𝐵 
 
Case III :- If 4c-𝐵𝐵2 is +ve 
Let 4c-B2=R2 
=∫ 1

[𝜀𝜀+( 𝐵𝐵
2𝐶𝐶)]2+ 𝑅𝑅2

4𝐶𝐶2
𝑎𝑎𝑑𝑑 

=∫ 1
[𝜀𝜀+( 𝐵𝐵

2𝐶𝐶)]2+( 𝑅𝑅
2𝑐𝑐)2 𝑎𝑎𝑑𝑑  

It is in the standard form ∫ 1
𝑥𝑥2+𝑎𝑎2 𝑎𝑎𝑑𝑑 = 1

𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡−1 𝑥𝑥
𝑎𝑎 

Substitute for 
X=𝐶𝐶 + ( 𝐵𝐵

2𝑐𝑐) & 𝑡𝑡 = ( 𝑅𝑅
2𝐶𝐶) 

= 1
( 𝑅𝑅

2𝑐𝑐)
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝐶𝐶+( 𝐵𝐵

2𝐶𝐶)

( 𝑅𝑅
2𝐶𝐶)

) 

=2𝐶𝐶
𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡−1 (2𝑐𝑐𝐶𝐶+𝐵𝐵

𝑅𝑅 ) 

Substitute √4𝑐𝑐 − 𝐵𝐵2 = 𝑅𝑅 
K2=

2𝑐𝑐
√4𝑐𝑐−𝐵𝐵2 𝑡𝑡𝑡𝑡𝑡𝑡−1( 2𝑐𝑐𝐶𝐶+𝐵𝐵

√4𝐶𝐶−𝐵𝐵2) 

 
Equation for centroid distance of area stress-
strain from neutral axis Nx 

Nx=∫ 𝑓𝑓.𝜀𝜀𝑑𝑑𝜀𝜀
∫ 𝑓𝑓𝑑𝑑𝜀𝜀  

= 1
𝐴𝐴𝐴𝐴 ∫ 𝑓𝑓𝐶𝐶𝑎𝑎𝐶𝐶 

∫ 𝑓𝑓𝐶𝐶𝑎𝑎𝑑𝑑 = ∫ 𝐴𝐴𝐶𝐶
1 + 𝐵𝐵𝑑𝑑 + 𝐶𝐶𝐶𝐶2 𝐶𝐶𝑎𝑎𝐶𝐶 

=A∫ 𝜀𝜀2
1+𝐵𝐵𝐶𝐶+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 =𝐴𝐴

𝐶𝐶 ∫ 𝐶𝐶𝜀𝜀2
1+𝐵𝐵𝐶𝐶+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 

=𝐴𝐴
𝐶𝐶 ∫ 1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2−(1+𝐵𝐵𝜀𝜀)

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2  𝑎𝑎𝐶𝐶 

=𝐴𝐴
𝐶𝐶 [∫ 1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2  𝑎𝑎𝐶𝐶 − ∫ (1+𝐵𝐵𝜀𝜀)
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

=𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − ∫ 1

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 − ∫ 𝐵𝐵𝐶𝐶
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

=𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − ∫ 1

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 − 𝐵𝐵
2𝐶𝐶 ∫ 2𝐶𝐶𝐶𝐶

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

= 𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − ∫ 1

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 − 𝐵𝐵
2𝐶𝐶 ∫ 2𝐶𝐶𝐶𝐶+𝐵𝐵−𝐵𝐵

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

= 𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − ∫ 1

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 − 𝐵𝐵
2𝐶𝐶 {∫ 2𝐶𝐶𝐶𝐶+𝐵𝐵

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] –

∫ 𝐵𝐵
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶}] 

=𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − ∫ 1

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 − 𝐵𝐵
2𝐶𝐶 {∫ 2𝐶𝐶𝐶𝐶+𝐵𝐵

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

+𝐵𝐵2

2𝐶𝐶 ∫ 𝐵𝐵
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶}] 

=𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − 𝐵𝐵

2𝐶𝐶 ∫ 2𝐶𝐶𝐶𝐶+𝐵𝐵
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] +(𝐵𝐵2

2𝐶𝐶 − 1) ∫ 𝐵𝐵
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

=𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − 𝐵𝐵

2𝐶𝐶 ∫ 2𝐶𝐶𝐶𝐶+𝐵𝐵
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] +(𝐵𝐵2

2𝐶𝐶 − 1) 1
𝐶𝐶 ∫ 𝐵𝐵

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 
on Integration , 
=𝐴𝐴

𝐶𝐶 [𝐶𝐶 − 𝐵𝐵
2𝐶𝐶 𝐾𝐾1 + 1

𝐶𝐶 (𝐵𝐵2

2𝐶𝐶 − 1)𝐾𝐾2 

=𝐴𝐴
𝐶𝐶 [𝐶𝐶 − 𝐵𝐵

2𝐶𝐶 𝐾𝐾1 + 1
2𝐶𝐶2 (𝐵𝐵2 − 2𝑐𝑐)𝐾𝐾2 

= 𝐴𝐴
2𝐶𝐶3 [2𝐶𝐶2𝑑𝑑 − 𝐵𝐵𝑐𝑐𝐾𝐾1 + (𝐵𝐵2-2c) 𝐾𝐾2 

Therefore 
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= - 1
𝜀𝜀−(− 𝐵𝐵

2𝐶𝐶)
 

𝐾𝐾2 = − 2𝐶𝐶
2𝐶𝐶𝐶𝐶 + 𝐵𝐵 

 
Case III :- If p2- 4q –ve 
                = 𝐴𝐴2 ln[(𝐶𝐶 − 𝛽𝛽)2 + 𝛾𝛾2] + 𝐴𝐴𝐴𝐴+𝐷𝐷

𝛾𝛾 𝑡𝑡𝑡𝑡𝑡𝑡−1(𝜀𝜀−𝐴𝐴
𝛾𝛾 ) 

Where, 

𝛽𝛽 = − 𝑝𝑝
2 =  − 𝐵𝐵

2𝑐𝑐, 

𝛾𝛾 = √𝑞𝑞 − (𝑝𝑝2

4 ) =√1
𝑐𝑐 − 𝐵𝐵2

4𝐶𝐶2 = √4𝐶𝐶−𝐵𝐵2

2𝐶𝐶  

Substituting 𝛽𝛽, 𝛾𝛾 𝑡𝑡𝑡𝑡𝑎𝑎 𝐴𝐴 = 0, 𝐷𝐷 = 1  
=1

𝛾𝛾 𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝜀𝜀−𝐴𝐴
𝛾𝛾 ) 

= 1

√4𝑐𝑐−𝐵𝐵2
2𝐶𝐶

𝑡𝑡𝑡𝑡𝑡𝑡−1(
𝜀𝜀−(− 𝐵𝐵

2𝐶𝐶)

√4𝐶𝐶−𝐵𝐵2
2𝐶𝐶

) 

= 2𝐶𝐶
√4𝐶𝐶−𝐵𝐵2 𝑡𝑡𝑡𝑡𝑡𝑡−1(

(2𝑐𝑐∈+𝐵𝐵
2𝐶𝐶 )

√4𝐶𝐶−𝐵𝐵2
2𝐶𝐶

) 

K2=
2𝐶𝐶

√4𝐶𝐶−𝐵𝐵2 𝑡𝑡𝑡𝑡𝑡𝑡−1(
(2𝑐𝑐∈+𝐵𝐵

2𝐶𝐶 )

√4𝐶𝐶−𝐵𝐵2
2𝐶𝐶

) 

Solution for K2 With ∫ 1
[𝜀𝜀+( 𝐵𝐵

2𝐶𝐶)2+4𝐶𝐶−𝐵𝐵2
4𝐶𝐶2

𝑎𝑎𝐶𝐶:- 

The three solutions for k2 depending up on “4C-B2” 
 
Case I :- If 4C-B2 is –ve or (B2-4c is +ve) 
Let 4c-B2 = -Q2 
= ∫ 1

[𝜀𝜀+( 𝐵𝐵
2𝐶𝐶)]

2
− 𝑄𝑄2

4𝑐𝑐2
𝑎𝑎𝐶𝐶 

=∫ 1

[𝜀𝜀+( 𝐵𝐵
2𝐶𝐶)]

2
−( 𝑄𝑄

2𝑐𝑐)2
𝑎𝑎𝐶𝐶  

It is in the standard form , ∫ 1
𝑥𝑥2−𝑎𝑎2dX = 1

2𝑎𝑎 ln (𝑋𝑋−𝑎𝑎)
(𝑋𝑋+𝑎𝑎) 

Substitute for  
X=𝐶𝐶 + ( 𝐵𝐵

2𝐶𝐶) & 𝑡𝑡 = ( 𝑄𝑄
2𝐶𝐶) 

= 1
2( 𝑄𝑄

2𝐶𝐶)
ln (𝜀𝜀+( 𝐵𝐵

2𝐶𝐶)−( 𝑄𝑄
2𝐶𝐶))

(𝜀𝜀+( 𝐵𝐵
2𝐶𝐶)+( 𝑄𝑄

2𝐶𝐶))
 

K2=
𝐶𝐶
𝑄𝑄 𝑙𝑙𝑡𝑡 (2𝑐𝑐𝜀𝜀+𝐵𝐵−𝑄𝑄)

(2𝑐𝑐𝜀𝜀+𝐵𝐵+𝑄𝑄) 
 
Case II :- If 4c-𝐵𝐵2 𝑖𝑖𝑖𝑖 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 
Let 4c-𝐵𝐵2 = 0 
=∫ 1

[𝜀𝜀+( 𝐵𝐵
2𝐶𝐶)]2 𝑎𝑎𝐶𝐶 

=4𝑐𝑐2 ∫ 1
[2𝑐𝑐𝜀𝜀+𝐵𝐵]2 𝑎𝑎𝐶𝐶 

Let U=2c𝐶𝐶 + 𝐵𝐵 
𝑎𝑎𝑑𝑑
𝑎𝑎𝐶𝐶 = 2𝐶𝐶 𝑍𝑍𝑍𝑍 𝑎𝑎𝑑𝑑

2𝑐𝑐 = 𝑎𝑎𝐶𝐶 

=4𝑐𝑐2 ∫ 1
[𝑈𝑈]2

𝑑𝑑𝑑𝑑
2𝑐𝑐  

=2c∫ 1
[𝑈𝑈]2 𝑎𝑎𝑑𝑑 

=2c[𝑈𝑈−2+1

−2+1 ] 

=2c[𝑈𝑈−1

−1 ] 
=-2c[ 1

−𝑈𝑈] 
K2=- 2𝐶𝐶

2𝐶𝐶𝐶𝐶+𝐵𝐵 
 
Case III :- If 4c-𝐵𝐵2 is +ve 
Let 4c-B2=R2 
=∫ 1

[𝜀𝜀+( 𝐵𝐵
2𝐶𝐶)]2+ 𝑅𝑅2

4𝐶𝐶2
𝑎𝑎𝑑𝑑 

=∫ 1
[𝜀𝜀+( 𝐵𝐵

2𝐶𝐶)]2+( 𝑅𝑅
2𝑐𝑐)2 𝑎𝑎𝑑𝑑  

It is in the standard form ∫ 1
𝑥𝑥2+𝑎𝑎2 𝑎𝑎𝑑𝑑 = 1

𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡−1 𝑥𝑥
𝑎𝑎 

Substitute for 
X=𝐶𝐶 + ( 𝐵𝐵

2𝑐𝑐) & 𝑡𝑡 = ( 𝑅𝑅
2𝐶𝐶) 

= 1
( 𝑅𝑅

2𝑐𝑐)
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝐶𝐶+( 𝐵𝐵

2𝐶𝐶)

( 𝑅𝑅
2𝐶𝐶)

) 

=2𝐶𝐶
𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡−1 (2𝑐𝑐𝐶𝐶+𝐵𝐵

𝑅𝑅 ) 

Substitute √4𝑐𝑐 − 𝐵𝐵2 = 𝑅𝑅 
K2=

2𝑐𝑐
√4𝑐𝑐−𝐵𝐵2 𝑡𝑡𝑡𝑡𝑡𝑡−1( 2𝑐𝑐𝐶𝐶+𝐵𝐵

√4𝐶𝐶−𝐵𝐵2) 

 
Equation for centroid distance of area stress-
strain from neutral axis Nx 

Nx=∫ 𝑓𝑓.𝜀𝜀𝑑𝑑𝜀𝜀
∫ 𝑓𝑓𝑑𝑑𝜀𝜀  

= 1
𝐴𝐴𝐴𝐴 ∫ 𝑓𝑓𝐶𝐶𝑎𝑎𝐶𝐶 

∫ 𝑓𝑓𝐶𝐶𝑎𝑎𝑑𝑑 = ∫ 𝐴𝐴𝐶𝐶
1 + 𝐵𝐵𝑑𝑑 + 𝐶𝐶𝐶𝐶2 𝐶𝐶𝑎𝑎𝐶𝐶 

=A∫ 𝜀𝜀2
1+𝐵𝐵𝐶𝐶+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 =𝐴𝐴

𝐶𝐶 ∫ 𝐶𝐶𝜀𝜀2
1+𝐵𝐵𝐶𝐶+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 

=𝐴𝐴
𝐶𝐶 ∫ 1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2−(1+𝐵𝐵𝜀𝜀)

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2  𝑎𝑎𝐶𝐶 

=𝐴𝐴
𝐶𝐶 [∫ 1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2  𝑎𝑎𝐶𝐶 − ∫ (1+𝐵𝐵𝜀𝜀)
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

=𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − ∫ 1

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 − ∫ 𝐵𝐵𝐶𝐶
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

=𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − ∫ 1

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 − 𝐵𝐵
2𝐶𝐶 ∫ 2𝐶𝐶𝐶𝐶

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

= 𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − ∫ 1

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 − 𝐵𝐵
2𝐶𝐶 ∫ 2𝐶𝐶𝐶𝐶+𝐵𝐵−𝐵𝐵

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

= 𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − ∫ 1

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 − 𝐵𝐵
2𝐶𝐶 {∫ 2𝐶𝐶𝐶𝐶+𝐵𝐵

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] –

∫ 𝐵𝐵
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶}] 

=𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − ∫ 1

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶 − 𝐵𝐵
2𝐶𝐶 {∫ 2𝐶𝐶𝐶𝐶+𝐵𝐵

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

+𝐵𝐵2

2𝐶𝐶 ∫ 𝐵𝐵
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶}] 

=𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − 𝐵𝐵

2𝐶𝐶 ∫ 2𝐶𝐶𝐶𝐶+𝐵𝐵
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] +(𝐵𝐵2

2𝐶𝐶 − 1) ∫ 𝐵𝐵
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 

=𝐴𝐴
𝐶𝐶[∫ 𝑎𝑎𝐶𝐶 − 𝐵𝐵

2𝐶𝐶 ∫ 2𝐶𝐶𝐶𝐶+𝐵𝐵
1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] +(𝐵𝐵2

2𝐶𝐶 − 1) 1
𝐶𝐶 ∫ 𝐵𝐵

1+𝐵𝐵𝜀𝜀+𝐶𝐶𝜀𝜀2 𝑎𝑎𝐶𝐶] 
on Integration , 
=𝐴𝐴

𝐶𝐶 [𝐶𝐶 − 𝐵𝐵
2𝐶𝐶 𝐾𝐾1 + 1

𝐶𝐶 (𝐵𝐵2

2𝐶𝐶 − 1)𝐾𝐾2 

=𝐴𝐴
𝐶𝐶 [𝐶𝐶 − 𝐵𝐵

2𝐶𝐶 𝐾𝐾1 + 1
2𝐶𝐶2 (𝐵𝐵2 − 2𝑐𝑐)𝐾𝐾2 

= 𝐴𝐴
2𝐶𝐶3 [2𝐶𝐶2𝑑𝑑 − 𝐵𝐵𝑐𝑐𝐾𝐾1 + (𝐵𝐵2-2c) 𝐾𝐾2 

Therefore 

∫ 𝑓𝑓. 𝜖𝜖𝜖𝜖𝜖𝜖 = 𝐴𝐴
2𝐶𝐶3 [2𝐶𝐶2𝜀𝜀 − 𝐵𝐵𝐶𝐶𝐾𝐾1 + (𝐵𝐵2 − 2𝐶𝐶)𝐾𝐾2] 

Substituting  

𝐴𝐴𝑏𝑏 = 𝐴𝐴
2𝐶𝐶 𝐾𝐾1 − 𝐴𝐴𝐵𝐵

2𝐶𝐶2
𝐾𝐾2 

∫ 𝑓𝑓𝜀𝜀𝜖𝜖𝜀𝜀 = 𝐴𝐴
2𝑐𝑐3 [ 2𝐶𝐶2𝜀𝜀 − 𝐵𝐵𝐶𝐶𝐾𝐾1 + (𝐵𝐵2 − 2𝐶𝐶)𝐾𝐾2] 

In 1
𝐴𝐴𝐴𝐴 ∫ 𝑓𝑓𝜀𝜀𝜖𝜖𝜀𝜀 

Substituting above, 

=
𝐴𝐴

2𝑐𝑐3(2𝑐𝑐2𝜖𝜖−𝐵𝐵𝐵𝐵𝐾𝐾1+(𝐵𝐵2−2𝐵𝐵)𝐾𝐾2
𝐴𝐴

2𝐶𝐶2(𝐵𝐵𝐾𝐾1−𝐵𝐵𝐾𝐾2)
 

= (2𝑐𝑐2𝜖𝜖 − 𝐵𝐵𝐶𝐶𝐾𝐾1 + (𝐵𝐵2 − 2𝐶𝐶)𝐾𝐾2
𝐶𝐶(𝐶𝐶𝐾𝐾1 − 𝐵𝐵𝐾𝐾2)  

Thus, centroid distance of area from neutral axis 

𝑁𝑁𝑥𝑥
∫ 𝑓𝑓𝜀𝜀𝜖𝜖𝜀𝜀
∫ 𝑓𝑓𝜖𝜖𝜀𝜀 = (2𝑐𝑐2𝜀𝜀 − 𝐵𝐵𝑐𝑐𝐾𝐾1 + (𝐵𝐵2 − 2𝐶𝐶)𝐾𝐾2

𝐶𝐶(𝐶𝐶𝐾𝐾1 − 𝐵𝐵𝐾𝐾2)  

Hence, expression for compressive force (𝑐𝑐𝑢𝑢) is given 
by equation 
[b 𝑋𝑋𝑈𝑈 𝜀𝜀𝑐𝑐𝑢𝑢]( 𝐴𝐴

2𝐵𝐵⁄ 𝐾𝐾1 − 𝐴𝐴𝐵𝐵
2𝐵𝐵2

𝐾𝐾2) 
Where  
  Cu is compressive force 
b is breadth of the section 
𝑋𝑋𝑢𝑢 is depth of neutral axis 
𝜀𝜀𝑐𝑐𝑢𝑢  is the ultimate strain in concrete 
A , B & C are the constants obtained from stress-strain 
curves  
 
Calculation of stress block parameters 
Assume initial trial value 𝑋𝑋𝑢𝑢/d 
Using strain-compatibility method determine the 𝜀𝜀𝐴𝐴 by 
following equation 

𝜀𝜀𝐴𝐴 = 𝜖𝜖𝑐𝑐𝑢𝑢 ( 𝜖𝜖
𝑋𝑋𝑢𝑢

− 1) 

Determine the design stress fy corresponding to 𝜀𝜀𝐴𝐴 using 
the design stress-strain curve of steel  
Determine the value T=𝑓𝑓𝑦𝑦*Ast 
The area AB under stress-strain curve was calculated 
from equation by taking fu=fcu 
The stress block parameter ∝ is obtained from equation 
by taking fu=fcu 
The depth of the parabolic portion of the stress-block(x2) 
was obtained from stress-strain diagram and is given by 
X1=[𝜖𝜖𝑐𝑐/𝜖𝜖𝑐𝑐𝑢𝑢] ∗ 𝑋𝑋𝑈𝑈 
Similarly, the depth of rectangular portion of stress-
block(x2) is given by 
x2  =[ 𝜖𝜖𝑐𝑐𝑢𝑢-𝜖𝜖𝑐𝑐/𝜖𝜖𝑐𝑐𝑢𝑢] ∗ 𝑋𝑋𝑈𝑈 
Compressive force component for the parabolic portion 
(c1)of stress-block is given by 
c1=2/3X1(𝛼𝛼𝑓𝑓𝑐𝑐𝑢𝑢)b 
given by 
c2=X2(𝛼𝛼𝑓𝑓𝑐𝑐𝑢𝑢)b 
thus total compressive force(cu) is given  by cu= c1+ c2 

Let X be the distance of the line of the action of 
compressive force from extreme top fiber , then 
X=[C1(3/8X1+X2)+C2(X2/2)]/ CU 

Let X=𝛽𝛽 Xu 
Where 𝛽𝛽 is the effective stress-block depth factor and is 
a function of X1, X2, C1, C2 and CU by virtue of the 
equilibrium, compressive force must equal to tensile 
force.compare the difference between compressive 
force and tensile force,if the value is insignificant then 
calculate XU/d with initially assumed value .If both 
values are equal stress –block parameters 𝛼𝛼 and 𝛽𝛽 Are 
accepted. Otherwise, repeat the procedure assuming 
new value of XU/d .  
 
4 Theoretical moments and curvatures 
The experimental results of moments have been 
analyzed by developing procedures for obtaining the 
complete theoretical moment-curvature diagrams. The 
models proposed for stress-strain behaviour of concrete 
mixes are used as the basis for prediction of the 
analytical behaviour of moment-curvature and in 
deriving the expressions of the resisting moments and 
curvatures. For obtaining the complete moment 
curvature relationship for any cross-section, discrete 
values of concrete strains (Є) were selected such that 
even distribution of points on the plot, both before and 
after maximum was obtained. 
The procedure used in the computation is given below. 
i) Calculation of neutral axis depth for given values of 
concrete strains (Є) 
ii) Calculation of moment carrying capacities (M) 
iii) Calculation of theoretical moment curvature values 
 
Moment of resistance is given by 
 Mt=CU*Z 
Substituting fcu=fck 
Mt= 𝛼𝛼 fck bXu(d-  𝛽𝛽XU)  
Also moment of resistance Mt is given by Mt=ktfckbd2 
    Kt=Mt/bd2 

Where kt is moment resistance factor 
kt= 𝛼𝛼′Xu/d(1-  𝛽𝛽XU/d) 
using partial safety factor 1.5 
kt= 𝛼𝛼Xu/d(1-  𝛽𝛽XU/d) 
Theoretical moment is obtained by Mt=ktfckbd2 

The resistance factor Kt for each grade calculated using 
developed stress-block parameters  
 
As mentioned earlier, a final phase of experimental was 
undertaken to validate the stress block and design 
parameters which are developed. 
 
5 Conclusions 
After determining the stress-strain behaviour of 
concrete, empirical equations were developed based on 
the relevant simplified models proposed by (1) Derived 
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Saenz model based on Madrid parabola as adopted by 
the European Concrete Committee, (2) Modified Saenz 
model (1964), and (3) model of Mansur et al. (1997) to 
present uni-axial stress-strain behaviour of concrete 
mixes and these models were compared with 
experimental stress-strain behaviour. 
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