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Abstract. This article presents an approach to optimize the electrical connection topology of tidal energy 

converters in a tidal farm. The methodology is based on a genetic algorithm (GA). The main purpose is to 

present a technique of coding to find the best electrical connection topology of the tidal farm network. The 

optimization model takes into account the energy loss in the submarine cables. The model gives as its output 

the optimal number of turbine clusters connected to each offshore substation, the number of turbines in each 

cluster, the cross-section of MV and HV cables, the connection design for each cluster of turbines as well as 

the number and the locations of the offshore substations. A particle swarm optimization algorithm (PSO) is 

used to confirm the results obtained with the GA. The optimization approach is applied to the Fromveur 

Strait (France). 

1 Introduction 

Both industrialized and developing countries have to 

meet growing energy needs. In the context of climate 

emergency, several countries have shown a strong 

interest to reduce greenhouse gases and increase 

significantly the share of renewable energies in their 

national energy production. To meet this objective, 

marine renewable energies can contribute substantially 

to new energy sources that do not emit greenhouse gases. 

Compared to the other marine energy sources, the tidal 

energy extracted using Tidal Energy Converters (TECs) 

has the great advantage of being highly predictable, 

facilitating the management of its production and 

distribution [1]. Nevertheless, the extraction of this 

energy requires significant investment. Indeed, one of 

the major challenges facing the development of tidal 

turbines is the cost of producing energy, which is 

nowadays significantly higher than that produced from 

fossil fuels. It is therefore now necessary to develop 

tools to optimize the entire production chain and to 

reduce the cost of the tidal energy production. 

The energy cost of a TEC farm depends on the 

configuration of the power grid. In marine renewable 

energy applications, the electrical system cost represents 

between 15 and 30% of the total investment cost, of 

which 5% are the costs of submarine cables [2,3]. The 

cost of the electrical system is influenced by several 

factors which are intertwined [3]. These factors such as 

the energy loss and the investment cost of the Electrical 

Connection Topology (ECT) have to be studied and 

optimized beforehand. The implementation of an 

optimization procedure during the project planning stage 

intends to reach the best compromise between technical 

performance and investment cost [4]. 

For large tidal farms, the energy produced by TECs 

must be collected at one or more Offshore Sub-Stations 

(OSSs) and transported by submarine cables to the 

Onshore Connection Point (OCP) (Fig. 1). Several 

optimization approaches have been proposed in the 

literature to optimize the ECT. These approaches have 

mainly focused on offshore wind farm applications 

where the technological maturity level is higher than that 

of tidal farms. Metaheuristic optimization methods have 

proven their effectiveness and are widely used in the 

literature. For instance, Hou et al. [5] focussed mainly on 

cable optimization using simple algorithms, such as the 

minimum spanning tree algorithm or a dynamic 

minimum spanning tree as in [6]. Others adopted broader 

optimization approaches including the number and the 

location of OSSs, the ECT as well as the selection of 

electrical components in terms of voltage level. To this 

end, González et al. [7] used a particle swarm 

optimization (PSO) algorithm whereas Dahmani et al. 

[8] developed an optimization method based on a mixed 

minimum spanning tree and a Genetic Algorithm (GA). 

Only a few studies have focused on the optimization of 

the ECT of tidal farms. The only existing studies take 

into consideration a limited number of optimization 

variables such as the length of submarine cables and 

their cross-sections [9,10]. In this work, we present an 

optimization model based on a GA which takes into 

account a large panel of optimization variables.  This 

optimization model takes into account the energy loss in 

the submarine cables. The model gives as its output the 

internal design of the connection topology among the 

TECs and the electrical Offshore SubStation (OSS), the 
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cross-section of MV and HV cables, and the number and 

locations of OSSs as well the sizing of its components. A 

PSO algorithm will be used to confirm the GA results.  

The optimization model will be applied on a hypothetical 

hydrodynamic site containing 45 TECs, located in the 

Fromveur Strait (France). This tidal turbine site 

represents the second greatest tidal potential in France. 

The mathematical formulation of the optimization 

problem is provided in detail in section II. In section III, 

the optimization methodology is presented. The results 

are discussed in Section IV. 

 

Fig.1. General ECT configuration of a tidal farm 

2 Mathematical formulation of the 
Optimization problem 

The ECT optimization problem consists in finding the 

optimal number of turbine clusters, the number of 

turbines and connection design for each cluster, the 

cross-section of MV and HV cables as well as the 

number and the locations of the OSSs. The optimization 

approach takes also into account the energy loss as well 

as the amount of reactive power required to compensate. 

The objective function of the electrical connection 

topology FETC is a multicriteria function, defined as the 

sum of the investment cost Cinvest and the cost of the 

energy loss in the connection network Closses. 

                       FECT = min (Closses + Cinvest)  (1) 

2.1 Cost of the energy loss 

A load flow calculation is adopted in this work to 

evaluate the power losses Plosses. To feed the load flow 

algorithm, line and bus data are constructed from the 

connection matrix (A) and from the submarines cables 

data used (the construction of A is detailed in the 

following section). The TECs are modeled as PQ-nodes. 

The algorithm provides the modules and phases voltages 

(V and α) at different nodes in the grid. The load flow 

calculation consists of solving both (2) and (3) using the 

universal method of Newton-Raphson [11]. 

Pi,j=V2
i (gi,j-Gi,j)+ViVj [Gi,j cos(αi- αj) + Bi,j sin(αi- αj)]  (2) 

Qi,j=V2
i (hi,j-Bi,j)+ViVj [Gi,j sin(αi- αj) - Bi,j cos(αi- αj)]   (3) 

Where Pi,j and Qi,j are respectively the active and 

reactive power transmitted from the node “i” to node “j”, 

yi,j=gi,j+hi,j is the parallel admittance in a π diagram and 

Yi,j=Gi,j+Bi,j is the global admittance of the network. 

Assuming that some profit PR will be realized, the 

cost induced by these power losses is calculated as 

follows: 

           Closses =(Plosses .Th . Celect ) / (1-PR)       (4) 

Where Celect is the electricity cost, which is estimated 

in our study at 0.145 €/kWh and Th is the number of the 

tidal farm operating hours. 

2.2 Electrical investment cost 

It is assumed that the total ECT investment is made in 

the first year and paid during the lifetime T of the tidal 

farm with a bank interest rate r. Cinvest is therefore 

calculated as follows: 

          Cinvest = {C0.r.(1+r)T} / {[(1+r)T-1)].[1-PR]}   (5) 

Where C0 is the initial investment cost. 

The components of the electricity network that are 

considered in the initial investment cost are: the cost of 

MV and HV cables Ccable, the cost of reactive energy 

compensation equipments Cec and the cost of the OSSs 

COSS. The initial investment cost can be defined as the 

sum of the three costs and calculated as follows: 

C0 = Ccable + COSS + Cec       (6) 

The cable cost is calculated as follows [12]: 

                  Ccable,i= Ac+Bc+exp[(Sn,i . Cc)/102]  (7) 

Where Ac, Bc and Cc are the coefficients of the 

submarine cable cost which depend on the voltage level 

and are estimated in [12] as bellow: 

Table 1. Coefficient values of the submarine cable cost model. 

Voltage 

level 
Ac Bc Cc 

22 kV 0.0217 0.0921 5.3671 

132 kV 0.2011 0.0234 1.5505 

Reactive energy compensation equipment is installed 

at the ends of the HVAC cables. Cec is proportional to the 

amount of total reactive power Qcomp to be compensated 

and is calculated as follows  [12]: 

                  Cec=-93015.6+ 165. Qcomp
0.4473  (8) 

An OSS includes a step-up transformer and its 

associated switchgear [13]. The cost of the OSS platform 

is estimated by the model proposed in [14]. The cost of 

an OSS is defined as the sum of the costs of the step-up 

transformer calculated by (9) [14] [13]; the switchgear is 

calculated with (10)[12], and the cost of the offshore 

platform is calculated with (11) [15]. 

                  Ctr = -157727 + 280.5 Stn
0.4473  (9) 

                  CSG = 30400 + 0.57 Urated  (10) 

                  Cpl = 2 + 0.07 Stn  (11) 

Where Stn is the rated power of the transformer 

installed in the OSS and Urated is the rated voltage of the 

switchgear, line to line (V). 
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3 Optimization methodology 

3.1. Connection matrix construction 
The ECT is modeled by a connection matrix A as shown 

in Fig.2 and as adopted in [8] (in the offshore wind 

turbine context). The elements of this matrix are either 1 

if the bus of line i is connected to the bus of column j or 

0 if there is no connection. The connection matrix shown 

in Fig.2 is a square, symmetric matrix of size nA. 

                  nA = NTEC + nOSS + 1  (12) 

Where nOSS is the number of OSSs and NTEC is the 

number of TECs in the farm. 

The connection matrix is composed of 3 submatrices: 

namely ATEC-TEC, ATEC-OSS and ATEC-OCP. They represent 

respectively the connection topology between the TECs, 

the connection topology between OSS(s) and TECs and 

the connection topology between OSS(s) and the OCP. 

 

Fig. 2. Schematic representation of the connection matrix. 

3.1. Optimization Algorithms 
The GA permits to solve both constrained and 

unconstrained optimization problems. This method is 

inspired by Charles Darwin’s theory of natural 

evolution. The basic principle of the GA is the evolution 

during the simulation time of a population. The fittest 

individuals are selected for reproduction to produce 

offspring of the next generation. Three operators called 

“selection”, “crossover” and “mutation” are applied to 

generate new individuals. Each individual is encoded 

into a chromosome XGA. The gens of the chromosome 

are binary values. 

The PSO is a population based stochastic 

optimization technique developed by 

Eberhart and Kennedy in 1995. It is inspired by social 

behavior of bird flocking or fish schooling [16]. The 

speed and position of each particle is updated according 

to the following equation [17]: 

Vt+1 = ωvt + r1c1(pi,t-xt) + r2c2(pg,t-xt) 

 Xt+1=xt+ vt+1                 (13) 

Where c1 and c2 are two positive constants, r1 and r2 

are two random functions in the range [0-1], vt is the 

velocity at the time t, xt is the position of the particle, pi,t 

is the best previous position, pg,t is the est candidate 

solution for the entire swarm, and ω is the inertia weight 

coefficient. 

Each chromosome generated by the GA or the PSO 

algorithm represents a different topology of connection. 

The general chromosome structure of XGA is presented in 

Fig.3. It is composed of 4 sub-chromosomes: 

 

 

Fig. 3. General structure of XGA. 

1. The sub-chromosome XTEC of size NV,TEC represents 

the connection topology between the TECs and is 

used to fill the ATEC-TEC matrix. NV,TEC depends on 

the number of TECs and is calculated as follows: 

                  NV,TEC = [NTEC ( NTEC–1)] / 2  (14) 

2. The sub-chromosome Xn,OSS represents the number 

of OSSs. This number determines the size of A. In 

our case, we set the maximum number of OSSs to 3. 

Thus Xn,OSS is encoded in 3 bits (Nvn,OSS=2). 

3. The sub-chromosomes Xx,OSS and Xy,OSS represent 

the positions of the OSSs the x and the y- axis, 

respectively. It is coded as a 4 bit binary string: 

NV,xOSS = NV,yOSS =4 nOSS  (15) 

The number of the variables of XGA (i.e.Nv) is then 

calculated as follows: 

NV=NV,TEC +NV,xOSS + NV,yOSS + Nvn,OSS  (16) 

 

Fig. 4. Overview of the optimization method. 

 

To minimize the search space, we reduce the number of 

variables by adopting the two simplifications used in [8]. 

(i) Each TEC can only be connected to its eight direct 
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neighbours. (ii) The OSS is connected to the closest TEC 

from each cluster. These simplifications are sensible 

considering that the connection between two remote 

nodes is not optimal. The overall optimization procedure 

is represented in Fig.4. 

4 Results and discussion 

The turbine characteristics are those of the Atlantis 

AR1500 tidal turbine. The turbine used in this 

application is a horizontal axis turbine. The rotor 

diameter of the turbine is 18 m. The cut-in, rated and 

cut-out speed of the turbine are respectively 0.5 m/s, 3 

m/s and 5 m/s. The optimization approach is applied to a 

900m×900m area located in the Fromveur Strait. The 

farm is composed of 45 TECs arranged as illustrated in 

Fig 5. The voltage levels of the network are 22kV for the 

collection system and 132 kV for the transmission 

system. AC transmission is ensured by a single three-

core XLPE subsea cable. The sizes of submarine cables 

C,size and the power of transformers T,size are 

standardized. CMV,size (22 kV,mm2) = [35,50,70, 95, 120, 

150, 815, 240], CHV,size (132 kV,mm2) = [185, 240, 300, 

400, 500, 630, 800, 1000],  Tsize(MVA) = [10, 25 ,40, 50, 

100, 125, 150, 180, 200]. The OCP considered in this 

work is located approximately 20 km away from the 

center of the farm. The parameters of the GA and PSO 

are synthesized in Table 2. 

 

Fig. 5. TECs positions. 

 

Table 2. GA and PSO parameters. 

 Quantity Value 

G
A

 

p
aram

eters 

Number of variables 142 

Population Size 50 

Max. number of iterations 3000 

Crossover percentage 0,8 

Mutation rate 0,02 

Number of mutants random 

P
S

O
 p

aram
eters 

Number of variables 142 

Swarm size 50 

Max. number of iterations 3000 

Initial ; Final cognitive parameter  2.5 ; 0.5 

Initial ; Final social parameter 0.5 ; 2.5 

Constriction factor 1 

Inertia weight coefficient 1 

Initial cognitive parameter  2.5 

 

The optimal ECTs using a GA and a PSO algorithm 

are represented in Fig.6. The two electrical topologies 

are very similar, especially in terms of the number of 

turbine clusters connected to each OSS, the number of 

turbines in each cluster, the cross-section of MV and HV 

cables and the number and locations of OSSs. Indeed, 

for both connection topologies, the connections between 

the TECs and between the TECs and the OSS are 

represented respectively by the ATEC-TEC and ATEC-OSS 

submatrices. These connections are realized without any 

crossing between cables. The optimal number of OSS is 

1 in a central positioning along x-axis ((x,y) = (495,315)) 

with a transformer of 100 MVA. The TECs are 

distributed over 5 clusters. The number of TECs per 

cluster ranges from 8 to 10 turbines. The clustering is 

carried out in a mixed chain/star configuration since this 

type of connection offers the best compromise between 

the total length and cross-sections of the MV cables in 

the total investment cost. The TECs are connected by 

MV cables with a cross-section of 3x185 mm2. The 

connection between the OSS and the OCP is established 

by a 3x185mm2 HV section cable. The details of the 

electrical architectures are summarized in Table 3. 

Table 3. Optimal ELECTRICAL ARCHITECTURE.  

Quantity 
Value 

GA PSO 

Number of OSSs 1 1 

Number of MV feeders per OSS 5 5 

clustering Mixed 

string/star 

Mixed 

string/star 

Number of  TEC per group 8:10 8:10 

Sizes of MV cables (mm2) 3x185 3x185 

Sizes of HV cables (mm2) 3x185 3x185 

Cable length (km) 25.15 25.48 

Transformer Power (MVA) 100 100 

The convergence of the GA and the PSO algorithm is 

shown in Fig.7. The GA converges faster than the PSO 

algorithm (the GA converges to the final solution after 

about 1500 generations whereas the PSO algorithm 

converges after about 2000 generations), and towards a 

slightly better results (FECT = 34.39 using the GA versus 

34.62 using the PSO algorithm). This small difference is 

due to the total length of cable employed in the two 

electrical architectures. Indeed, the PSO algorithm 

provides a connection topology with a higher cable 

length (25.45 km) than the GA (25.15 km). The ECT 

costs for the two configurations are detailed in Table 4. 

Table 4. Cost of the optimal electrical connection Topology.  

Quantity 
Cost (M€) 

GA PSO 

MV ; HV cables 2.34 ; 8.41 2.50 ; 8.41 

Setup transformer 1.402 1.402 

MV/HV transformer 0.798 0.798 

MV; HV protection cells 0.215 ; 0.106 0.215 ; 0.106 

OSS platform 9 9 

Reactive energy 

compensation equipment 

0.532 0.532 

Initial investment 22.81 22.96 

Investment 34.26 34.62 

Cost of losses 0.134 0.138 

Fitness of FECT 34.39 34.62 
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Fig. 6. Optimal ETC. (a) Using a GA (b) Using a PSO. 

 

Fig. 7. Convergence of the objective function. 

5  Conclusions 

The economic performance of tidal farms is highly 

dependent on the design of the electrical connection 

topology and the sizing of its components. This study 

has presented an optimization approach based on a 

genetic algorithm to find the best connection topology of 

the tidal farm network, containing 45 tidal energy 

converters located in the Fromveur Strait (France). The 

approach took into account the energy loss in the 

submarine cables and a large panel of variables such as 

the number of tidal energy converters clusters connected 

to each offshore substation, the number of tidal energy 

converters in each cluster, the cross-section of MV and 

HV cables, the connection design for each cluster of 

turbines and the number and locations of OSSs. 

The results show that it is better to connect the tidal 

turbines in a mixed chain/star clustering with a central 

positioning of the offshore substation. This result was 

confirmed by using a PSO algorithm. The optimal 

architectures generated by the two algorithms were very 

similar. The GA converged to a slightly better result than 

those obtained using the PSO. 

In future work, the method presented will be 

integrated into an optimization tool containing several 

optimization modules such as the optimization of the 

positioning of the tidal energy converters within the 

array. 
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