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Abstract. From the customer's perspective, the appeal of electric vehicles depends on the simplicity and 
ease of their use, such as flexible access to electric power from the grid to recharge the batteries of their 
vehicles. Therefore, the expansion of charging infrastructure will be an important part of electric mobility. 
The related charging infrastructure is a big challenge for the load capacity of the grid connection without 
additional intelligent charge management: if the control of the charging process is not implemented, it is 
necessary to ensure the total of the maximum output of all xEVs at the grid connection point, which requires 
huge costs. This paper proposes to build a prediction module for forecasting dynamic charging load using 
machine learning (ML) techniques. The module will be integrated into a real charge management concept 
with optimization procedures for controlling the dynamic load point. The value of load forecasting through 
practical load data of a car park were taken to illustrate the proposed methods. The prediction performance 
of different ML methods under the same data condition (e.g., holiday data) are compared and evaluated.

1 Introduction  

The uncontrolled charging of xEVs might increase the 
system’s peak demand and overload transformers. In 
order to ensure a more sustainable power system, a 
charge management for smoothing peak loads should be 
taken into consideration [1-3]. Precise dynamic charging 
load forecasting can effectively help to optimize a charge 
management system. In an optimal scenario, the 
reservation of parking spaces is made possible as an 
additional service. Furthermore, it would be conceivable 
to provide a user interface at the charging pile, through 
which the desired departure time, energy quantity and 
other information can be exchanged. Based on this and 
the underlying load predictions, a charging prioritisation 
of the individual xEVs in the event of an increased load 
volume can be controlled according to the situation. 
Costs for network expansion in conjunction with the 
expansion of upstream and downstream charging 
infrastructure through connection services, charges and 
transformers could be kept to a minimum. This approach 
directly benefits distribution network operators, property 
operators and even end consumers by harmonising their 
mobility needs. The use of AI methods in the concrete 
application case of prediction strategies for charging 
xEVs already proved to be efficient and more accurate 
than conventional probabilistic algorithms [4]. A 
comparison of different approaches was also possible. 
For super-short-term forecasting with deep learning, the 
long-short-term memory (LSTM) already showed very 
realistic results as described in [5]. 

Unlike before, the goal of this work is to use ML 
techniques to predict the charging load and modularly 
integrate it into an intelligent charging management 
system. As a further step, the dynamic load management 
methods can be applied to flatten the load curve with the 
help of predefined schedules. This is generally done by 
reducing the simultaneous factor and thus leads to a 
reduced load at the grid connection point. In addition, it 
is relevant to refer to the data that is actually available. 
Obtaining information from the vehicles like the state of 
charge (SOC) or energy demand seems realistic, but 
there would have to be digital communication with the 
charging station, which would require both the vehicle 
and the charging station to be ISO-15118 compliant (in 
Europe) [6]. As current instruments on the market do not 
yet fully support this technology, this criterion is not 
applicable. Therefore, in addition to the measurement 
data of the charging stations, which are provided by the 
charging station operators, it is advantageous to obtain 
further information on the environment. Thus, the 
features described in this paper come very close to those 
as they were set up in [7], whereby weather and time-
related information such as holidays, weekdays etc. 
prove to be expedient. 

1.1 The EVx charge management with 
integrated prediction module 

KI-LAN is a project that began in Germany end of 2019, 
that researches smart charging in various usage scenarios. 
Within this framework funded by the Ministry of the 
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Environment, Climate and Energy, entitled "AI-based 
network load management for parking under different 
usage scenarios", the work is carried out in cooperation 
with a network of local energy suppliers, grid operators, 
charging station operators and renowned scientific 
institutes. The solutions will then be piloted at two real 
car park operating companies in Germany. First of all, 
the use case of an employer and organiser in urban areas 
as well as the car park of an employer in rural areas will 
be reproduced. Later, the sustainable concepts should be 
transferable to various other scenarios. 
 

 

Fig. 1. Predictive charge management concept 
 
As shown in Figure 1, the charging management 

indicates the embedding of a prediction model based on 
recorded load data and possible additional data. In 
principle, this is a modularly designed charging 
infrastructure which can be adapted by the smallest of 
changes. In the underlying architecture, the process unit 
of "Load Forecasting" should stand out as an innovative 
new element of a charging infrastructure. Its task is to 
forecast the load curves of the xEVs and to correlate the 
own ML prediction model with the simulation model 
generated by the "Profile-generator". It can be assumed 
that the “Profile-generator” is the more reliable source at 
the beginning until enough measurement data is 
accumulated. The “Charging Infrastructure and Energy 
Management” then apply methods for intelligent load 
and charge management control to flatten potential load 
curves with the help of the transmitted forecast. The 
maximum power that can be made available depends on 
the respective charging station as well as the power limit 
provided by the "distribution network operator" at the 
grid connection point. The recorded load data of the 
individual charging points is sent to the "Load 
Forecasting" backend at regular intervals. The mutual 
exchange of these two instances takes place via a 
configured application program interface (API). By 
means of one or more web crawlers, further external data 
from the web is analysed and processed. This can be 
information in various forms, which can be used as 
additional data for load forecasting training and increase 
the efficiency of the model. The profile generator also 
accesses external data. This is basically information on 
local traffic volumes.  

2 Machine Learning methods  

In this chapter, the most suitable machine learning 
methods for this application are presented, whose tests 
and results are subsequently compared. These have in 
common that they are regressors, which should serve the 
purpose of delivering a continuous value. Besides, they 
are basically supervised techniques that allow to collect 
data and to generate an output from previous experiences. 

2.1 K-Nearest Neighbors 

K-nearest neighbor is a non-parametric method which 
can be used both as a classifier and as a regressor. The 
basic idea is to assign the target value to one or more 
closest known values based on a density function related 
to the distance in a multidimensional space. The simplest 
way to calculate the target value is to calculate the 
average of all adjacent points. It should be noted that low 
values for k (number of nearest neighbors) make the 
regressor susceptible to variance, i.e. individual 
misclassified points in the reference data. However, if k 
is chosen too large, there is a risk of including points 
with a large distance to the regressor. In principle, the 
method can be robust against high noise of the training 
data and effective for large data sets due to the lower 
computational effort. However, one needs to determine 
the number of nearest neighbours. Caution is required 
when choosing the features. In general, the algorithm 
performs better, with a small number of input variables, 
because more data is needed, which leads to the problem 
of overfitting. [8-9] 

2.2 Random Forest 

A possibility that delivers good results with a high 
number of features and is resistant to overfitting is 
Random Forest as a regressor model. This is a meta-
estimator that primarily forms several uncorrelated 
decision trees from numerous sub-samples. In addition, a 
weighted average is calculated to enhance the prediction 
accuracy. For a correct operation it is necessary to carry 
out a parameterization. In this work, the number of trees 
or estimators, the maximum depth of the trees and the 
number of features to be considered were defined. 
Unfortunately, it is partially difficult to interpret which 
features in the model play a decisive role in influencing 
the prediction. It is advantageous, however, that the 
decision trees can be set up and trained very quickly and 
paralyzed. Therefore, one of the strengths of the method 
is definitely the ability to work with large amounts of 
data and features. In addition, the variance of the 
individual decisions of different trees influences the 
overall result better. [10-12] 

2.3 Decision Tree 

Individual trees, where random samples are selected 
from a data set, the decision tree procedure uses the 
entire data set with all available input variables for its 
prediction model. On the one hand, the result can be 
better interpreted and only a few parameters need to be 
parameterized. But on the other hand, there is the danger 
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of over-fitting the tree, so actually cross-validation is 
even more essential in this case. Random Forest will 
rather reduce the error part of the variance than the part 
of the distortion. Thus, the procedure with Decision 
Trees on a test data set could be better at first sight. 
However, higher accuracy can be expected for Random 
Forests in reality or in case of an unexpected validation. 
[13] 

2.4 Light GBM 

This method also uses tree-based learning algorithms. 
Special attention is paid to the procedure because a large 
amount of data can be processed and less memory is 
needed to execute it, thus justifying the origin of the 
name. As in other boosting methods, the model builds up 
gradually. But in this regard, there is a decisive 
difference. Light GBM allows the tree to grow leaf-wise, 
i.e. vertically, while other algorithms grow level by level. 
Thus, when an identical leaf grows, the algorithm can 
reduce the loss more than level-wise algorithms. 
Moreover, the next leaf can be selected in such a way 
that the additional loss increases minimally. This 
supports the statement why the algorithm focuses on the 
accuracy of results. The parameter tuning is complicated 
here, since there is a large selection for this in order to 
achieve a great performance. Here again the overfitting 
is to be paid more attention to. The algorithm reacts 
particularly sensitively with small data sets. But in 
summary, the algorithm is one of the best in the field of 
machine learning and benefits from its high efficiency. 
[14] 

3 The forecasting framework 

The general process of xEVs charging load forecasting is 
shown in Figure 2. The framework consists of four 
following steps: 
 

1. Data-Preprocessing 
2. Model Building, Training and Test 
3. Performance Evaluation 
4. Model Management and Deployment 

 
Charging load depends on many characteristics and 

influencing factors, such as historical load data, week 
characteristics, holiday or festival attributes, weather 
condition and temperature. These data can be collected 
in different ways. The two common ways are from 
exclusive data providers and the web. 

In the Data-Preprocessing step the measurable 
property so-called features are extracted and selected 
from the original dataset. After the dataset has been 
cleaned, integrated and transformed, it is split into 
training and test set. The training set is used to train the 
model, in order to find hidden characteristics and 
temporal correlations between features and target values. 
In general, the majority of the data (about 80%) is 
divided into training sets for training models, and test 
sets are used to assess the predictive power of models. 

The model parameters are optimized (“tuned”) by 
training process in order to maximize the model's 
predictive accuracy [15]. Once the best prediction 
accuracy of a trained forecasting model is built, it will be 
tested on the test set.  

 

Fig. 2. The framework of ML based forecast 
 

Then, the performance of predicted load with 
different algorithms will be compared to each other. 
Following metrics are commonly used for model 
evaluation: root mean square error (RMSE), mean 
average percentage error (MAPE), mean absolute error 
(MAE) and mean square error (MSE). The formulas of 
RMSE, MAPE, MAE and MSE are given in equations (1) 
– (4) [16]. 
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where 
N is the number of samples, 
yො

i  is the forecasted value of the i-th sample,  
y

i
 is the actual value of the i-th sample. 

 
In addition, a coefficient of determination named R 

square is also chosen as the important metric to estimate 
the goodness of fit. The calculation formula is defined as 
follows [17]: 

 

R2 = 1 – 
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   (5) 

 
Where 
N is the number of samples, 
yത is the average value of all samples 
yො

i  is the forecasted value of the i-th sample 
 

The R2 ranges from 0 to 1, and the closer the value of 
R2 is to 1, the more accurate the prediction would be.  

Finally, the best trained forecasting models will be 
stored and can be used on new data. The new dataset 
includes features, while the target values are unknown. 
Based on the supplied features, the trained models will 
predict the unknown target values, which are the 
charging load values in this case. 

4 Practical Examples and the Analysis 

In the Framework of KI-LAN, pre-tests are used to 
verify the predictive performance of different ML 
algorithms. In this paper, a real-world dataset of a car 
park in Germany is applied as practical example.  

The original data contains the accumulated charging 
load of all the charging piles and the time interval is 10 
minutes. After a preliminary analysis of the original data, 
it is apparent that the distribution of the total charging 
load on weekends and weekdays is completely different. 
The total load curves of the car park on weekdays 
present highly periodical characteristics and peak 
properties, while on the weekend (Saturday and Sunday), 
there is almost no charging load. The possible reason is 
that the car park is not operated on weekends. 

So-called time-based features can be extracted from 
the historical data of the car park using the time stamp. 
Time-based features include the month of the year, the 
hour of the day and weekday property etc. 
Simultaneously, the holiday information has also been 
collected. In addition to the above, features such as 
weather-based features are also taken into account. They 
can be extracted from weather service provider in 
different intervals, like hourly or daily temperature, 
rainfall and sunshine duration. 

The forecasting module is developed in the Python 
programming language, which is popular in the field of 
data analytics. Especially as it has many libraries, such 
as pandas, numpy, Scikit-learn, Tensorflow and Keras. 

4.1 Results of forecast curve 

Figure 3 shows the charging load of the car park 
forecasted by different ML algorithms, including K-
Nearest Neighbors Regressor (KNNR), lightGBM 
(LGBM), Random Forest Regressor (RFR) and Decision 
Tree Regressor (DTR). In this case, the feature values 
contain weather-based data. In order to better compare 
their prediction performance, the results of the same 
week including the weekend are considered here, not 
only just one day. In the figure, the dark line shows the 
current charging load of the car park. As mentioned 
above, it could be easily seen that, the curve has a certain 
periodicity and nonlinear characteristics on weekdays, 
which also makes it more difficult to build a general 
model for accurate prediction. From the weekday, it can 
be observed that xEVs began to charge at about 7’o  

Fig. 3. Load forecast curve of one day and one week with weather data 
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clock in the morning and then it reached the peak load 
around 9 o'clock, which is also consistent with the usual 
activities and behavior of people, including xEV users. 
The load curve with green point line represents that the 
KNNR model can reasonably forecast the value of each 
point, and the predicted load is nearly close to the actual 
load. But at the same time there are relatively large 
errors in the prediction of lower charging load values 
(after 12 o'clock). In contrast, the LGBM (yellow dotted 
line) model can capture the general trend changes of the 
load, but for the steep changes of the load, especially for 
the data near the peak load, it cannot be accurately 
predicted. The DTR (light blue line) and RFR (orange 
dotted line) models can fit the peak load relatively well. 
Their prediction performance is close, but it seems that 
DTR is more sensitive to rapid rising changes, because 
the predicted load curves show sharper peaks on 
weekdays. However, the performance of KNNR on the 
weekend is very poor, from the peak of the charging load 
about 300 KVA on weekdays to almost 0 on the 
weekend, such changes in this case cannot be predicted. 
Although the predictions of RFR and DTR also have 
errors, they are far smaller than the KNNR.  

For comparison purposes, the weather-based features 
are removed from the case of Figure 4. However, 
prediction accuracy of KNNR on Saturday is much 
better. It no longer forecasts a peak. With the 
comparison of these two figures, it is clear that the 
weather-based features can be disturbing influences on 
the prediction performance of KNNR. The KNNR 
algorithm uses "feature similarity", so-called "nearest 
neighbor" principle, to predict the value of new data 
point. This means that the weather-based features make 
this day's features closer to a weekday rather than a 
weekend day. Therefore, in real application cases, 
feature values should be appropriately selected based on 
the individual datasets. Generally speaking, the 
forecasting performance with weather data is better than 
without weather data during the weekdays, especially 
when observing the prediction results near the peak load 
on Tuesday (2017-11-14) in this practical example. 

4.2 Performance Evaluation  

From the analysis of the original data, the sum of the 
charging loads of the charging piles can be 0 for a 
certain period of time, especially at the weekend. 
Therefore, MAPE is not suitable as an evaluation metric 
here, because y

i
 in formula (2) as a denominator is 

mathematically not allowed to be equal to 0. Thus, 
RMSE, MAE and R2 are selected as the criteria for 
evaluating the prediction accuracy of the models. 

Table 1. Performance comparison of one day with (grey area) 
and without (white area) weather data for all methods. 

Metrics 
K-Nearest 
Neighbors 
Regressor 

Decision 
Tree 

Regressor 

Random 
Forest 

Regressor 

Light 
GBM 

RMSE 26.8783 12. 3508 12.2347 17.1227 

MAE 16.8377 7.7829 7.4394 7.5534 

R2 0.8605 0.9705 0.9710 0.9179 

RMSE 12.5734 17.7091 21.4342 20.6072 

MAE 6.7385 10.3856 10.6058 9.2320 

R2 0.9558 0.9394 0.9113 0.9180 

 
The results of performance comparison for one day 

in two cases are shown in Table 1. The grey area in the 
table represents the forecast results with weather data. It 
demonstrates that RFR and DTR models have the lowest 
error and best suitability of fit with weather data 
compared to other methods. The R2 values of both 
models reached 0.97. But only if the load values of peak 
area are considered, the prediction performance of 
KNNR actually seems to be better than other methods. 
This has also been proven in the case without weather 
data in the lower part of the table. KNNR model has the 
best performance with the R2 score, which is more than 
0.95, the MAE and RMSE values are only 6.7385 and 
12.5734. But as mentioned above, the performance of 
the KNNR model may be not robust enough with more 
features. In addition, the prediction performance of the 
DTR model is also relatively good, the R2 score has 
reached 0.93, and the MAE values are only 10.3856. 

Fig. 4. Load forecast curve of one day and one week without weather data 
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According to the prediction performance of reference [7], 
the ML algorithms used in this case study have a higher 
prediction accuracy, especially when referring to the 
values of RMSE and MAE.  And compared with [18], 
this paper also provides more options of multi-steps 
forecasting with comparable prediction accuracy. 
However, the prediction result must depend on the 
characteristics of the load curve of the xEVs in the 
specific application. 

5 Conclusions 

The load forecasting module can play an important part 
embedded in a real charging management system to help 
the control module, so-called “charging infrastructure 
and energy management” to better solve the dynamic 
load control problem. A comparison of different ML 
methods could be made by accessing real-world 
measurement data. Associated model predictions in the 
pre-test already proved a sufficient R2 of the data and 
thus confirmed the good suitability of the introduced 
methods for the present use case.  

In the framework of the Project KI-LAN, future work 
will focus on measuring the efficiency of various 
features and on identifying further useful input data. 
Some system-based features may also have a large 
impact on the prediction results, such as some 
information about charging stations and xEV users, 
including travel plans and activities. More methods will 
be tried and also revised by analysing the best possible 
influencing parameters in order to contribute to an 
increase in prediction accuracy and develop a more 
general model with various time horizons of forecasting. 
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