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Abstract. In this paper, the previously obtained results on recognition of 
ionograms using deep learning are expanded to predict the parameters of 
the ionosphere. After the ionospheric parameters have been identified on 
the ionogram using deep learning in real time, we can predict the 
parameters for some time ahead on the basis of the new data obtained 
Examples of predicting the ionosphere parameters using an artificial 
recurrent neural network architecture long short-term memory are given. 
The place of the block for predicting the parameters of the ionosphere in 
the system for analyzing ionospheric data using deep learning methods is 
shown. 

1 Introduction 

In [1-9, etc.], various approaches are proposed for predicting mainly the foF2 parameter 
of the ionosphere. In this paper, the previously obtained results on recognition of ionograms 
using deep learning are expanded to predict the parameters of the ionosphere in real time. 
In papers [10-11], it is proposed to apply deep learning for recognition of ionograms and to 
further distinguish ionospheric parameters based on recognized layers. An outstanding 
feature of the new method proposed by the authors in [10] is the use of deep learning to 
recognize traces of reflections from different layers of the ionosphere. Deep neural network 
learning is realized on the basis of reference markings created by operators. The operators 
mark ionospheric parameters on the ionograms and detect, when possible, reflection traces 
from E, F1 and F2 layers of the ionosphere. 

Currently, the following basic characteristics are determined by 
ionograms[12](Figure 1): 

- fmin is the lowest frequency at which traces of reflections from the ionosphere are 
observed on the ionogram; 

- foE is the critical frequency of the O-component of the lowest thick layer in region E; 
- foF1 is the critical frequency of the O-component reflected from the F1 layer; 
- foF2 is the critical frequency of the O-component reflected from the F2 layer; 
- fхF2 is the critical frequency of the X-component reflected from the layer F2; 
- fbEs is the screening frequency of the sporadic layer Es, that is, the lowest frequency 

at which first-order reflections of the O-component from the overlying region are observed; 
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- foEs is the limiting frequency of the O-component reflected from the Es layer; 
- h'E is the minimum effective height of the region E; 
- h'Es is the minimum effective trace height of reflections from Es used to determine 

foEs; 
- h'F is the minimum effective height of the trace of reflections of the O-component 

from the region F taken as a whole; 
- h'F2 is the minimum effective height of the layer F2. 
 Using the noted parameters of the ionosphere and / or the traces of reflections from 

different layers of the ionosphere, the electron concentration profile N (h) is constructed, 
based on which the heights hmF2, hmF1 and hmE of the main maximum of the electron 
concentration of the F2, F1 and E layers are determined, respectively. 

 Dimensionless characteristics are also determined by ionograms [12]: 
- M3000 (F2, F1) is a coefficient showing the ratio of the maximum applicable 

frequency (MUF) to the critical frequency of a given layer with oblique incidence at a jump 
distance of 3000 km; 

- types of sporadic layers by which reflections from Es are classified. There are eleven 
special categories by which reflections from sporadic Es layers are classified; 

- types of F-scattering - classification of the type of scattered reflections.  
 The determination of ionospheric characteristics by ionograms is often difficult, and 

sometimes completely impossible for various reasons (ionospheric or instrumental). 
Therefore, to explain the difficulties of characterization and classification of phenomena 
adopted by the international system of letter designations [6]. 

 Based on the selected traces of reflections from different layers of the ionosphere 
[10], we are able to determine at least the following of the above parameters of the 
ionosphere [11]: foF2, foF1, foE, h'F2, h'F, h'E. Based on the selected parameters and based 
on the selected traces of reflections from different layers of the ionosphere, we are able to 
construct the electron concentration profile N(h) and then determine the heights hmF2, 
hmF1 and hmE. 

 

Fig. 1. Example of vertical sounding ionogram with main measurable parameters [6]. 
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After the ionospheric parameters have been identified on the ionogram using deep 
learning [10,11] in real time, we can predict the parameters for some time ahead on the 
basis of the new data obtained. The place of the block for predicting the future value of the 
analyzed ionospheric parameters is shown in  Figure 2. For example, consider using long 
short-term memory (LSTM) to predict foF2 and foE ionosphere parameters. 

 

Fig. 2. System for analyzing ionospheric data using deep learning methods. 

2 The use of long short-term memory to predict foF2 and foE 
ionosphere parameters 

LSTM  is an artificial recurrent neural network (RNN) architecture used in the field of 
deep learning [13]. Previously we used long short-term memory and gated recurrent unit 
(GRU) for predicting the values of geomagnetic indices [14]. In [14], it was shown that 
more accurate value predictions are provided by the selected LTSM architecture compared 
to the selected GRU architecture. LSTM networks are well-suited to classifying, processing 
and making predictions based on time series data, since there can be lags of unknown 
duration between important events in a time series. LSTMs were developed to deal with the 
exploding and vanishing gradient problems that can be encountered when training 
traditional RNNs. Relative insensitivity to gap length is an advantage of LSTM over RNNs, 
hidden Markov models and other sequence learning methods in numerous applications [15].  

Based on the application of Keras library [16], a program was written to predict 
ionosperic parameters. We used this LSTM architecture [17]: 

regressor = Sequential() 
# First LSTM layer with Dropout regularisation 
regressor.add(LSTM(units=50,return_sequences=True, 

input_shape=(X_train.shape[1],1))) 
regressor.add(Dropout(0.2)) 
# Second LSTM layer 
regressor.add(LSTM(units=50, return_sequences=True)) 
regressor.add(Dropout(0.2)) 
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# Third LSTM layer 
regressor.add(LSTM(units=50, return_sequences=True)) 
regressor.add(Dropout(0.2)) 
# Fourth LSTM layer 
regressor.add(LSTM(units=50)) 
regressor.add(Dropout(0.2)) 
# The output layer 
regressor.add(Dense(units=1)) 
# Compiling the RNN 
regressor.compile(optimizer='rmsprop',loss='mean_squared_error') 
# Fitting to the training set 
regressor.fit(X_train,y_train,epochs=50,batch_size=32) 
 
We used  Tesla K80 video card to train LSTM network. As an initial data for training 

the LSTM network to predict foF2 ionosphere parameter we used hourly data for 2018 
(Figure 3) from ionosonde “Parus-A” [18], which has been operated at the Institute of 
Cosmophysical Research and Radio Wave Propagation in Kamchatka since August 2015. 

Fig. 3. Training and test set for foF2 ionosphere parameter prediction. 

We used mean squared error loss function (LF) and after 50 training iteration we get LF 
result = 0.0044. The training time on the Tesla K80 video card of LTSM network took 2578 
seconds. Figure 4 shows the results of predicting the next foF2 ionosphere parameter value 
based on a series of known previous values. The root mean square error of prediction is 
0.4281. 

 

 

 

 

 

Fig. 4. Prediction results using the LTSM network for the next foF2 ionosphere parameter value 
based on a series of known previous values. 

As an initial data for training the LSTM network to predict foE ionosphere parameter 
we used hourly data for 2018 (Figure 5) from ionosonde “Parus-A”. 
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Fig. 4. Prediction results using the LTSM network for the next foF2 ionosphere parameter value 
based on a series of known previous values. 

As an initial data for training the LSTM network to predict foE ionosphere parameter 
we used hourly data for 2018 (Figure 5) from ionosonde “Parus-A”. 

 

Fig. 5. Training and test set for foE ionosphere parameter prediction. 

We used mean squared error loss function (LF) and after 50 training iteration we get LF 
result = 0.0103. The training time on the Tesla K80 video card of LTSM network took 983 
seconds. Figure 6 shows the results of predicting the next foE ionosphere parameter value 
based on a series of known previous values. The root mean square error of prediction is 
0.2100. 

 

Fig. 6. Prediction results using the LTSM network for the next foE ionosphere parameter value based 
on a series of known previous values. 

3 Conclusion 

 The paper presents the application of deep learning at various stages of the analysis of 
ionospheric data. Initially, deep learning is used to recognize the traces of reflection from 
different layers of the ionosphere in the ionogram [10], which makes it possible to extract 
some ionospheric parameters [11] and update the time series to predict in real time the 
future value of the analyzed ionospheric parameter. The above examples of using long 
short-term memory to predict foF2 and foE ionosphere parameters have shown the promise 
of end-to-end application of deep learning at various stages of ionospheric data analysis. It 
should be noted that further research is needed to improve the accuracy of forecasting 
ionospheric parameters. This should include the application of various predictive 
architectures of deep neural networks, the use of physical models and additional data on the 
state of the ionosphere, integration with existing results of forecasting the state of 
ionospheric parameters, and much more. 
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