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Abstract.
The paper describes the developed by authors technique for construct-
ing complex shell models of turbulence. The compilation of the equa-
tions of this model and its exactly solution are implemented using by
computer algebra system. The technique allows one to vary the sizes of
nonlocality of nonlinear interaction in the space of scales, expressions
for shell analogues of conservation laws, and the nature of stationary
solutions with different power distribution.

1 Introduction

This article will consider one part in information technology – a system of computer
algebra. This software environment allows you to manipulate algebraic expressions
(automated algebraic transformations), to avoid mistakes int algebraically cumber-
some calculations. Computer algebra is not very popular, unfortunately, for physics
research, it’s paper about one of their possible applications. The work is devoted to
how symbolic packages can be used to constraction wide classes of shell models of
MHD turbulence .

An important property of turbulence is that it is described more clearly in scale
space than in physical space, because the three processes - energy injection, energy
transfer and dissipation, are separated in scale space, and mixed in physical space.
The main idea of shell turbulence models is in the construction of a chain of ordinary
differential equations describing the processes of spectral energy transfer in developed
turbulence. Such models make it possible to reproduce realistic scaling law.

2 Construction of shell equations

One possible approach to deriving the general form of shell models is as follows [1, 2].
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The general view of the Navier-Stokes equation and the induction equation is as
follows

∂v

∂t
+ (v�)v = ν � v −�p+ f,

∂B

∂t
= rot (v ×B) + µ�B,

�v = 0,

(1)

here v = v(r, t), p = p(r, t), f = f(r, t) and B = B(r, t). Here, the components of the
field depend on spatial coordinates and time.

If we represent the fields by their spatial Fourier spectrum, then we have the
following system

∂v̂

∂t
= i

∫∫

R3×R3

S (k, s,q) δ (s+ q+ k) v̂∗ (s, t) v̂∗ (q, t) dsdq+

+i

∫∫

R3×R3

L (k, s,q) δ (s+ q+ k) B̂∗ (s, t) B̂∗ (q, t) dsdq− νk2v̂∗ (k, t) + f̂ ′ (k, t) ,

∂B̂

∂t
= i

∫∫

R3×R3

W (k, s,q) δ (s+ q+ k) v̂∗ (s, t) B̂∗ (q, t) dsdq− µk2B̂∗ (k, t) ,

(2)

where f̂ ′ (k, t) =
k×

(
k× f̂ (k, t)

)

k2
and v̂ = v̂(k, t), B̂ = B̂(k, t), f̂ = f̂(k, t) – are

spatial spectrums of the fields.
In the system (2), an asterisk denotes a complex conjugation. The fields with caps

are complex, since they are expressed from the initial ones by the Fourier transform,
however, the kernels of nonlinear interactions S (k, s,q), L (k, s,q) and W (k, s,q)
are real, this follows from the fact that this is the structure of equations that arises
when we transfer magnetohydrodynamic equations by the Fourier transform from the
physical space to the space of scales.

The concept of shell models is as follows. The axis of wavenumbers is divided into
zones (shells) expanding exponentially kn <| k |< kn+1, usually the denominator of
the progression is 2, then we can talk about octaves kn = 2nk0.

For each zone, a complex variable is introduced, the modulus is interpreted by
the a measure of the pulsations of the scale shell, a kind of collective variable for
shell. For these variables, a dynamic system is compiled, the equations of which at
the phenomenological level correspond to the base equations of a turbulent system.

Next, the collective variables un and Bn are introduced, which are a common
measure of ripple. Thus, the general form of the shell equations can be written as

dtun

dt
= i

∑
ij

Sniju
∗
i u

∗
j + i

∑
ij

LnijB
∗
i B

∗
j − νk2u∗

n + fn,

dtBn

dt
= i

∑
ij

Wniju
∗
iB

∗
j − µk2B∗

n,
(3)

Good kind of analogy between systems (2) and (3).
The task of constructing a specific model is to provide certain quadratic conserva-

tion laws in the conservative limit, the analogs of which take place in the exact system.
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Table 1. Conservation laws

Conservation laws in hydrodynamics
Hydrodynamic helisity

HV =

∫

R3

(v · rotv) dV HV =
1

8π3

∫

R3

v̂ · (−ik× v̂∗) dk HV =
∑
n

2n�un�un

Kinetic energy

EV =

∫

R3

v2dV EV =
1

8π3

∫

R3

v̂ · v̂∗dk EV =
∑
n

2nunu
∗
n

Conservation laws in magnetohydrodynamics
Total energy

E =

∫

R3

(
v2 +B2

)
dV E =

1

8π3

∫

R3

(
v̂ · v̂∗ + B̂ · B̂∗

)
dk E =

∑
n

(unu
∗
n +BnB

∗
n)

Magnetic helisity

HB =

∫

R3

(a ·B) dV HB =
1

8π3

∫

R3

1

k2

[
B̂ ·

(
−ik× B̂∗

)]
dk HB =

∑
n

2−n�Bn�Bn

Cross helisity

HC =

∫

R3

(v ·B) dV HC =
1

8π3

∫

R3

v̂ · B̂∗dk HC =
∑
n

(unB
∗
n + u∗

nBn)

This imposes various restrictions on the coefficients of the nonlinear interaction ma-
trices. It is for the calculation of these coefficients that we propose an automated
technology based on the use of computer algebra systems. We emphasize that it is
proposed to use symbolic computation not for studying the shell models themselves,
but for the easy and fast generation of various classes of models that ensure certain
conservation laws [3].

3 Conservation laws

Since there are no geometric flows in shell models at all, the only way to add infor-
mation about the two or three dimensions of flows to the model is to ensure that
the conservation laws are satisfied in each of these situations [2]. On the right-hand
side of the equation (3), only the quadratic form remains without external forces and
dissipative terms. Let us consider the shell analogs of conservation laws in the Table
1., which presents only the three-dimensional case of conservation of quantities in
«pure» hydrodynamics and magnetohydrodynamics. The first column contains the
necessary conservation laws in their original form. In the second column, the same
laws are presented in Fourier space on the scale of wave numbers. In the third, their
shell counterparts.

For example, for magnetic helicity HB . If we write down the mixed products in
terms of the coordinates of the vector B̂, then we get a bilinear form from the real
and imaginary parts of the coordinates, so the shell analog is taken in the form of
the same bilinear form from the real and imaginary parts of the collective variable
HB =

∑
n

2−n�Bn�Bn.
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4 Two representation of quadratic forms

Quadratic forms are analogues of the conserved quantities known in hydrodynamics
(magnetic hydrodynamics). In the system (3) in the quadratic form Snij the term
contains three indices, it is better to rewrite the matrix of nonlinear interactions in
the form of a term with two indices and separately the wave number 2n. This is due
to the fact that the nonlinear terms in the original equations contain the operator �,
whose analog in the scale space is the wave number 2n. In addition, it is customary
to write quadratic terms in shell equations through indices that give deviations from
a given scale level. Namely, such transitions are based on the assumption of the scale
self-similarity of the turbulent flow.

Let Qnij be some quadratic form, and xn and yn be shell variables. The quadratic
term on the n-th scale is as follows

Qnijxiyj (4)

It is convenient to work with this form of writing to obtain equations. And the final
record for building systems on a computer is conveniently obtained in the following
form

Qnijxiyj = 2nqi′,j′xn+i′yn+j′ , (5)

where i = n + i′, j = n + j′. The new indices define the distance from the current
n-th scale level to others in nonlinear interaction.

Those quadratic forms that bind the variables of the same field must have a sym-
metric matrix. Conservation laws do not require this; therefore, the symmetry con-
dition must be imposed separately.

Next, we consider the form of equations for the interaction matrix for the MHD
turbulence situation, as well as the general technology we assume for compiling and
solving finite truncations of systems using symbolic computation packages.

5 Shell MHD turbulence model

Consider developed turbulence in an incompressible conductive fluid.
The equations of magnethydrodynamics in the conservative limit preserve three

quadratic quantities. In the three-dimensional case (which we are considering) this
is the total energy E =

∑
n

(unu
∗
n +BnB

∗
n), cross helicity HC =

∑
n

(unB
∗
n + u∗

nBn)

and magnetic helicity HB =
∑
n

2−n�Bn�Bn.

The conservation of total energy gives two types of equations of the following form

(li′,j′ + lj′,i′) + 2i
′
(l−i′,j′−i′ + lj′−i′,−i′) + 2j

′
(li′−j′,−j′ + l−j′,i′−j′) = 0,

li′,j′ + lj′,i′ + 2j
′
w−j′,i′−j′ + 2i

′
w−i′,j′−i′ = 0

(6)

The conservation of cross helicity gives two types of equations of the following
form

(si′,j′ + sj′,i′) + 2i
′
(s−i′,j′−i′ + sj′−i′,−i′) + 2j

′
(si′−j′,−j′ + s−j′,i′−j′) = 0,

wi′,j′ + 2j
′
si′−j′,−j′ + 2i

′
w−i′,j′−i′ + 2j

′
s−j′,i′−j′ = 0

(7)

The conservation of magnetic helicity gives equations of the following form

wi′,j′ − wi′−j′,−j′ = 0 (8)
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The system is also complemented by the following symmetries

li′,j′ − lj′,i′ = 0,
si′,j′ − sj′,i′ = 0

(9)

Thus, the system is composed of seven types of equations for functions s[i, j], l[i, j]
and w[i, j].

As a result, the construction of a shell model is reduced to the compilation of a
system of linear equations with rational coefficients of large dimension. Even for a
small number of spatial scales, for example, equal to two, the number of equations
becomes more than the spirit of hundreds. It is clear that even building such a
system «manually» is very problematic and requires automation. Symbol computing
packages allow you to quickly build and process such systems.

6 Domain of existence of equations
Each family of equations is infinite. However, we always set a certain limiting range J
of interactions in the space of scales, namely, if at least one of the indices of the matrix
element modulo large J, such an element is assumed to be zero. In other words, J
is a measure of the model’s nonlocality in the scale space. As a result, only a finite
number of equations are not identities. It is these equations that we automatically
form in the symbolic package into the system and then solve it.

Figure 1. The domain of existence of equations.

Real equations must be drawn up and solved only for pairs of indices from the
cruciform region Fig. 1. For indices outside the domain, the corresponding equations
degenerate into identities. The sets of calculated coefficients can then be represented
in a symbolic package using two-dimensional arrays, the indices of which change from
-J to J.
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7 Nonlinear interaction area

Let’s consider one more limitation that naturally follows from wave interactions. One
of the non-linear terms in the exact equations (2) looks like this

i

∫∫

R3×R3

S (k, s,q) δ (s+ q+ k) v̂∗ (s, t) v̂∗ (q, t) dsdq

The presence of the δ-function indicates that only waves whose wavenumbers form
a triangle interact. This is a manifestation of the law of conservation of momen-
tum. Therefore, in shell models, only those interactions should be retained, from
the wavelengths of the vectors of which a triangle is formed. It can be shown that
only the coefficients, the positions of which are indicated by circles in the Fig. 2,
can be nonzero. The diagram is shown for constraints at J = 6, if we consider ar-

Figure 2. Nonlinear interaction area

bitrarily distant interactions, then they extend to infinity. Two bars on the graph
(vertical and horizontal) indicate that energy can be pumped into a given scale from
the interaction of one arbitrarily large scale, and a scale close to the given one. This
corresponds to the well-known phenomenon of energy transfer from large to small
scales in turbulence, the so-called direct cascade.

The oblique strip indicates that energy can be pumped into a given scale from the
interaction of arbitrarily small, but close scales. This transfer is known in magneto-
hydrodynamics as the α-effect.
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Introduced additional constraints reduce the number of free variables, as well as
the number of solutions for J greater than or equal to 3.

It is clear that the resulting system for matrix elements will be linear, homoge-
neous, and with rational coefficients. This makes it possible to solve it absolutely ac-
curately in the case of using software that supports the arithmetic of rational numbers.
In particular, this can be done by computer algebra systems, any of which contains
appropriate procedures. We also note that the resulting system, as the calculations
show, is, as a rule, underdetermined and its general solution always determines a
whole parametric class of models that exactly satisfy the conservation laws.

The selection of specific models can be done for any additional considerations.
For example, additional equations can be introduced that ensure the existence of
a stationary solution in the model with a power-law distribution over scales. This
technique was implemented by us in the Maple computer algebra system [4] for «pure»
hydrodynamics, magnetohydrodynamics, turbulent convection and MHD convection.

8 Conclusions

A method is developed for constructing complex shell models of MHD turbulence,
the equations of which exactly satisfies the given conservation laws. It is performed
using any symbolic computation.

The technique allows the automated generation of model equations for arbitrary
long-range nonlinear interactions in the space of scales.

The program was developed in the MAPLE environment. The correctness of both
methods and programs is that it reproduces well-known shell models.
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