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Abstract. Microseismic phenomena are studied by a Sel’kov generalized nonlinear dy-
namic system. This system is mainly applied in biology to describe substrate and product
glycolytic oscillations. Thus, Sel’kov dynamic system can also describe interaction of
two types of fractures in an elastic-friable medium. The first type includes seed fractures
with lower energy and the second type are large fractures which generate microseisms.
The first type of fractures are triggers for the second type of fractures. However opposite
transition is possible. For example, when large fractures lose their energy and partially
become seed ones. After their concentration increase, the process repeats providing auto
oscillation character of microseism sources. Generalization of Sel’kov dynamic system
is its analogue which is based on hereditarity. Hereditarity is studied within hereditary
mechanics and it shows that a dynamic system can “remember” for some time the impact
which was made upon it. It is typical for viscoelastic and yielding mediums. The Sel’kov
generalized dynamic system will be called Sel’kov fractional dynamic system as long
as from the point of view of mathematical description, it can be represented in the form
of a system of differential equations with fractional derivatives. Fractional derivative or-
ders are associated with system hereditarity and are responsible for energy dissipation
intensity emitted by first- and second-type fractures. In the paper, the Sel’kov fractional
dynamic model was numerically solved by Adams-Bashforth-Moulton method. Oscillo-
grams and phase trajectories were plotted. It was shown that fractional dynamic model
may have relaxation and damped oscillations.

1 Introduction

In the paper [1] the authors suggested an interesting approach to describe fraction interactions in an
elastic-friable medium. The approach is based on application of Sel’kov nonlinear dynamic system
which is investigated in Biology [2].
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To the author’s opinion, the Sel’kov dynamic system describes well the interaction of two types
of fractures. The first type is seed fractures with lower energy which develop into the second type
of fractures of greater energy when they reach a critical level of their concertation. Fractures of the
second type are the sources of microseismic phenomena (oscillations) and they partially change to
seed fracture after energy output. Then this auto oscillation process repeats.

In the present paper we consider the Sel’kov generalized dynamic system which takes into account
the hereditary effect. Hereditarity means that a system can “remember” for some time the impact
which was made upon it. Thus, the process of interaction between two types of fractures may be quite
slow. Hereditary effects were firstly considered in Hereditary Mechanics to describe viscoelastic and
yielding mediums [3].

Mathematical description of hereditarity is based on Volter-type integro-differential equations with
difference kernels in the expression under integral sign which are sometimes called hereditary func-
tions [4]. Hereditary functions can be selected on the basis of experimental data, medium properties
or a process under investigation. However, in a first approximation, power hereditary functions are
usually selected to describe the hereditary effect the influence from which decreases with time. Power
hereditary functions give the possibility to apply mathematical apparatus of fractional calculus and to
turn from integro-differential equations to the equations with fractional derivatives [5–7]. Dynamic
systems which are described by fractional derivative are called fractional dynamic systems or dynamic
systems of fractional order [8].

Owing to the necessity to study the auto oscillation character of interaction of two types of frac-
tures, the main aim of the paper is to state the possibility of existence of auto oscillation modes within
the framework of Sel’kov fractional dynamic system (SFDS).

2 Some information from the theory of fractional calculus

In this section we consider the main definitions from the theory of fractional calculus. Its aspects can
be studied in detail in the books [5–7].

Definition 1. Riemann-Liouville fractional integral of order α:

Iα0t x (τ) =
1
Γ (α)

t∫

0

x (τ) dτ
(t − τ)1−α , α > 0, t > 0, (1)

where Γ (·) is the gamma function. Riemann-Liouville fractional integral (1) has the following prop-
erties: I0

0t x (τ) = x (t) , Iα0t I
β
0 x (τ) = Iα+β0t x (τ) , Iα0t I

β
0 x (τ) = Iβ0 Iα0t x (τ) .

Definitiion 2. Gerasimov-Caputo fractional derivative of order α has the form:

∂α0t x (τ) =



1
Γ (m − α)

t∫
0

x(m) (τ) dτ
(t − τ)α+1−m , 0 ≤ m − 1 < α < m,

dmx (t)
dtm ,m ∈ N.

(2)

Operator (2) has the following properties:

∂α0t I
α
0t x (τ) = x (t) , Iα0t∂

α
0t x (τ) −

i−1∑
k=0

x(k) (0) tk

k!
, t > 0.
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α
0t x (τ) −

i−1∑
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3 Problem statement

We consider the following nonlinear dynamic system:
{
∂α1

0t x (τ) = −x (t) + ay (t) + bx2 (t) y (t) , x (0) = x0
∂α2

0t y (τ) = v − ay (t) − bx2 (t) y (t) , y (0) = y0.
(3)

where x (t) is the function determining the concentration of seed first-type fractures; y (t) is the func-
tion determining the concentration of second-type fractures which generate microseisms, t ∈ [0, T ]
is the coordinate responsible for current time of the process, T > 0 is the constant, modeling
time;x0, y0, v, a, b are given positive constants; fractional differentiation operators are understood in
the sense of Gerasimov-Caputo of orders 0 < α1, α2 < 1 and are determined according to (2).

Remark 1. Dynamic system (3) is a generalization of the known Sel’kov dynamic system which
is used in Biology to describe substrate and product glycolytic oscillations. When the parameters
α1 = α2 = 1, the systems coincide.

The aim of the investigation of the paper is to find the SFDS (3) solution for given values of the
parameters x0, y0, v, a, b and to determine the conditions for existence of auto oscillations.

Before we turn to the method of SFDS (3) solution, we introduce some definitions form the theory
of qualitative analysis of dynamic systems to study asymptotic stability of its equilibrium points.

4 Asymptotic stability of equilibrium points

Definition 4. Sel’kov dynamic system is commensurable if fractional derivative orders are equal
between each other α1 = α2 = α, otherwise it is incommensurable.

Definition 5. SFDS (3) has one equilibrium point E = (x∗, y∗) which is the solution of the follow-
ing system: {

−x (t) + ay (t) + bx2 (t) y (t) = 0,
v − ay (t) − bx2 (t) y (t) = 0.

and has the form:
x∗ = v, y∗ =

v

a + bv2
. (4)

Definition 6. Jacobi matrix of SFDS (3) is the matrix of the form:

J (x, y) =
( − (1 − 2bxy) a + bx2

−2bxy −
(
a + bx2

)
)
. (5)

We should note that taking into account equilibrium point (4), Jacobian (5) has the form:

J (x∗, y∗) =



bv2 − a
a + bv2

a + bv2

−2bv2

a + bv2
−
(
a + bv2

)


. (6)

Examine equilibrium point (4) for asymptotic stability. In order to do that, we apply the following
theorems suggested in the paper [9].

Assume that m is the least common multiple of fractional order denominators α1 = β1/σ1, α2 =

β2/σ2, βi, σi ∈ Z, i = 1, 2. For the commensurable SFDS (3) the following theorem is true.
Theorem 1. Equilibrium point (4) is asymptotically stable for the commensurable SFDS (3) if all

eigen values λi of its Jacobi matrix (6) satisfy the condition
∣∣∣arg (λi)

∣∣∣ > γπ
2
, γ = 1/m, i = 1, . . . , β1 + β2, (7)
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and are calculated by the standard equation

det
(
diag
[
λmα1 , λmα2

] − J (x∗, y∗)
)
= 0. (8)

For the incommensurable SFDS the following theorem is true.
Theorem 2. Equilibrium point (4) is asymptotically stable for the incommensurable system (3),

where αi =
βi

m
, i = 1, 2, if all eigen values λi of its Jacobi matrix J satisfy the condition

∣∣∣arg (λi)
∣∣∣ > γπ

2
, i = 1, . . . , k, k = β1 + β2, (9)

where λi are calculated from the standard equation (8).
Assume that f1 (x, y) , f2 (x, y) are right parts of system (3) under consideration.
Proposition 1. (Criterion for the existence of a closed trajectory (Bendikson criterion)). If in

some simply connected region the function f (x, y) = ∂ f1
∂x +

∂ f2
∂y

does not change its sign and is not
identically zero, than there are no closed contours composed of trajectories in this region.

Proposition 2.(Criterion for existence of chaotic modes [9]). If the condition M = π
2m −

min
i

(
arg |λi|

)
< 0 is fulfilled, than there are no chaotic modes in the dynamic system.

Proposition 2 is a sequence of Theorem 2.

5 Solution method
As a method for solution of SFDS (3) we choose Adams-Bashforth-Moulton (ABM) which refers
to numerical predictor-corrector methods. ABM method was studied in detail and discussed in the
papers [10–12]. We adapt this method to solve SFDS (3). To do that we use definitions (1), (2) and
their properties. On a uniform mesh with the step τ = T /N we introduce the functions xp

n+1, y
p
n+1,

n = 0, . . . ,N − 1 which are determined by Adams-Bashforth formula (predictor) as


xp
n+1 = x0 +

τα1

Γ (α1 + 1)

n∑
j=0
θ1j,n+1

(
−x j + ay j + bx2

jy j

)
,

y
p
n+1 = y0 +

τα2

Γ (α2 + 1)

n∑
j=0
θ2j,n+1

(
v − ay j − bx2

jy j

)
,

θij,n+1 = (n − j + 1)αi − (n − j)αi , i = 1, 2,

(10)

and the functions xn+1, yn+1 which are determined by Adams-Moulton formula for the corrector


xn+1 = x0 +
τα1

Γ (α1 + 2)

((
−xP

n+1 + ayP
n+1 + b

(
xP

n+1

)2
yP

n+1

)
+

n∑
j=0
ρ1

j,n+1

(
−x j + ay j + bx2

jy j

))
,

yn+1 = y0 +
τα2

Γ (α2 + 2)

(
v − ayP

n+1 − b
(
xP

n+1

)2
yP

n+1 +
n∑

j=0
ρ2

j,n+1

(
v − ay j − bx2

jy j

))
,

(11)

where the weighting coefficients in (10) are determined by the formula

ρi
j,n+1 =



nαi+1 − (n − αi) (n + 1)αi , j = 0,
(n − j + 2)αi+1 + (n − j)αi+1 − 2(n − j + 1)αi+1, 1 ≤ j ≤ n,
1, , j = n + 1,
i = 1, 2.

It is known that for ABM method (x1 = x (t) , x2 = y (t) , i = 1, 2) the error estimation

max
1≤ j≤k

∣∣∣∣xi

(
t j

)
− xi, j

∣∣∣∣ = O
(
τ

1+min
i
αi
)

is fair.

Remark 2. We should note that in a classical case αi = 1 we obtain a classical ABM method of
the second-order accuracy.
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the second-order accuracy.

6 Results of qualitative analysis and numerical modeling

In this section, applying qualitative analysis and numerical modeling, we show that auto oscillation
modes are possible for SFDS (3).

Example 1. (Sel’kov classical dynamic system) When α1 = α2 = 1 in SFDS (3), than we come
to the classical model of Sel’kov dynamic system [1]. We choose the rest parameters of system (3)
from the paper [1]: a = 0.116, b = 0.602, v = 0.64421. Parameter v was estimated from the trace
of the Jacobian (6) equal to zero to obtain sustained oscillations. In this case, standard equation
(6) for m = 1 has pure imaginary roots λ1,2 = ±0.6048437164I, thus, the stationary point E =
(0.6442125706, 1.760933066) may be a center of a focus. We can show that according to Bendikson
criterion, the function f (x, y) = −0.602x2 + 1.204xy − 1.116 changes its sign in a simply connected
region. Thus, the stationary point E = (0.6442125706, 1.760933066) is the center.

It is known that a stationary point of center type is stable according to Lyapunov but it is not
asymptotically stable. Indeed, according to Theorem 1, condition (7) is not fulfilled for the commen-
surable system (3) when α1 = α2 = 1. However, phase trajectories reach stable boundary cycle just
like in the paper [1].

Figure 1. Oscillograms of fracture concentrations of the second type (a) and the first type (b); stable boundary
cycle (c) for Example 1.

Figure 1 illustrates calculated curves of oscillograms and phase trajectories obtained by method
(10), (11) taking into account that t ∈ [0, 100], and the number of mesh nodes is N = 2000. The initial
conditions x0, y0 were chosen (1, 1) and (0.6,1.7). It was done to show the boundary cycle stability
(Figure 1c) for Example 1.

Example 2. (SFDS commensurable case). We consider the case of commensurable SFDS (3) for
α1 = α2 = 0.8. We choose the following parameter values: a = 0.03, b = 1.3, v = 0.6,t ∈ [0, 200],
the number of mesh nodes is N = 2000. In this case the equilibrium point has the coordinates
E = (0.6, 1.204819277). According to Theorem 1, the standard equation for this point has the form
λ16−0.3815180723λ8+0.498 = 0, the roots of which satisfy condition (7). Thus, the equilibrium point
is asymptotically stable. We can show that according to Bendikson criterion, the function f (x, y) =
−1.3x2 + 2.6xy − 1.03 gives sign change in a simply connected domain, and the measure of existence
of chaotic modes is negative, M = −0.0050548591 < 0. Thus, we can make a conclusion that the
system has a closed phase trajectory and does not have chaotic modes. Owing to the fact that the point
is asymptotically stable, closed trajectory is a stable boundary cycle (Figure 2).
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Figure 2. Oscillograms of fracture concentration of the second (a) and the first (b) types; stable boundary cycle
(c) for Example 2.

Example 3.(SFDS incommensurable case). We consider an incommensurable SFDS (3) α1 =

1, α2 = 0.9. We choose other parameter values to be a = 0.12, b = 1.1, v = 0.6. Then the equilibrium
point (4) has the coordinates E = (0.6, 1.162790698). Investigate this point for asymptotic stability.
According to Theorem 1, standard equation (7), taking into account that α1 =

10
10 , α2 =

9
10 i.e. m = 10,

takes the form λ19 − 0.0188837209λ9 + 0.516 = 0. All the roots of this equation satisfy condition (9)
of Theorem 2. Thus, the equilibrium point is asymptotically stable.

Owing to Bendikson criterion, the function f (x, y) = −1.1x2 + 2.2xy − 1.12 changes its sign in a
simply connected domain and, consequently, the system may have a closed trajectory. According to
the criterion for existence of chaotic modes for Example 3, M = −0.0068640576 < 0, that is why they
are absent. Thus, we can make a conclusion that there is a stable closed trajectory, stable boundary
cycle.

Figure 3. Oscillograms of fracture concentration of the second (a) and the first (b) types; stable boundary cycle
(c) for Example 3.
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Figure 3. Oscillograms of fracture concentration of the second (a) and the first (b) types; stable boundary cycle
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Figure 3 illustrates calculated curves of osicllograms and phase trajectories plotted according to
ABM method (10), (11) for N = 2000. We see the boundary cycle. We can show that this cycle is
stable. A similar boundary cycle was obtained by the authors of the paper [1] but within the framework
of Sel’kov classical dynamic system.
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8 Conclusion

In the present paper, we have showed that with the help of elements of qualitative analysis of frac-
tional dynamic systems and numerical modeling, Sel’kov fractional dynamic system may have auto
oscillation modes. It is also interesting to investigate chaotic modes, for example, by constructing
Lyapunov maximum exponent spectra similar to the papers [13–15].
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