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Abstract. The paper discusses the processing and analysis methods for  
the geoacoustic and electromagnetic emission pulse signals recorded for 
more than 20 years at the IKIR FEB RAS geodynamic proving ground 
(Kamchatka Peninsula). The methods for pulse detection, waveform 
reconstruction, pulse time-frequency analysis using adaptive sparse 
approximation, structural description of pulse waveforms and pulse 
classification are proposed. To detect pulses, the adaptive threshold 
scheme is used. It adjusts to the noise level of a processed signal.  
To analyze time-frequency structure of the pulses, the adaptive matching 
pursuit algorithm is used. To identify pulse waveform, the structural 
description method is proposed. It encodes pulses with special image 
matrices. The method of the identified pulses classification is considered. 
Since the methods for pulse structure analysis are sensitive to noise and 
distortions, the authors propose the method for pulse waveform 
reconstruction based on wavelet filtering. The geophysical signal 
information features determined during the analysis can be used to search 
for anomalies in the data, and then establish a relationship between these 
anomalies and deformation process dynamics, in particular, with 
earthquake development processes. 

1 Introduction 
Continuous monitoring of geophysical signals at various stages of the deformation process 
has been carried out for more than 20 years at the IKIR FEB RAS geodynamic polygon in 
the seismically active region (Kamchatka Peninsula). The dynamics of pulse flow 
parameters of the recorded geophysical signals can be considered as an indicator of the 
stress-strain state of the geophysical system that generates these signals [1-4]. 

A variety of waveforms and a wide dynamic range of frequencies and amplitudes of 
signals, as well as strong noise from both natural and industrial noises significantly 
complicate the analysis of pulse geophysical signals using well-known statistical, spectral, 
energy, and other methods. Therefore, it is proposed to analyze geophysical signals in two 
directions. The first is to classify pulses by amplitude-time form in order to reduce pulse 
diversity and identify characteristic and anomalous forms; the second is to use sparse 
approximation to study the features of the time-frequency structure of geophysical signal 
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pulses. The methods considered in the paper are used for the analysis of geoacoustic and 
electromagnetic (electrical component of sferics) signals. 

2 Signal model 
In a general case, the studied geophysical signals can be mathematically described as a sum 
of noise ε(t) and some function s(t), the analytical expression of which is unknown: 

 
,)()(),()()( tstttstx    (1) 

where ε(t) describes nonstationary background noise containing noises of natural and 
artificial origin and s(t) is a «useful» signal. Signal s(t) is a flux of pulses different 
waveform, amplitude and frequency. Moreover, we accept the following constraint  
||s(t)|| > ||ε(t)||. Therefore, s(t)can be represented as: 
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where gi(t) is a function describing the i-th pulse; Ai is the amplitude of the i-th pulse; i is 
the generation time of the i-th pulse. Then the recorded geophysical signal is represented by 
an additive model (3): 
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Fig. 1 shows the graph of a geoacoustic signal fragment. 
 

 
Fig. 1. Geoacoustic emission signal fragment: (a) – noise, (b), (c) – pulses. 

3 Pulse waveform reconstruction 
In practice, a signal waveform is affected by natural noises, artificial interference, 
nonlinearity of the receiving path, limited dynamic range, etc. Distortions of geophysical 
signal waveforms negatively affect the quality of signal processing and analysis, so they 
must be preliminarily eliminated. 
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3 Pulse waveform reconstruction 
In practice, a signal waveform is affected by natural noises, artificial interference, 
nonlinearity of the receiving path, limited dynamic range, etc. Distortions of geophysical 
signal waveforms negatively affect the quality of signal processing and analysis, so they 
must be preliminarily eliminated. 

To reduce noise and to detect signal useful component, wavelet filtration was applied. 
This technology has proven itself well in geophysics and it is quite effective in the analysis 
of highly noisy signals [5-7]. Denoising is performed in three stages: 

1) forward wavelet transform, as a result of which a signal is represented as the sum of 
one approximating and N detailing components; 

2) modifying each detailing component based on the selected threshold scheme; 
3) inverse wavelet transform, as a result of which the signal is reconstructed from  

the approximating component of the level N and the modified detailing components  
of levels 1 to N. 

To select a wavelet family, a threshold scheme, and an algorithm for calculating  
the threshold value, a computational experiment was carried out on model and real 
geophysical signals. The best results were obtained using fourth-order Symlet wavelets 
(maximum possible level of decomposition), the posterior median rule, and the Empirical 
Bayes method [8] to calculate the threshold value. An example of noisy signal waveform 
reconstruction is shown in Fig. 2. 

 
Fig. 2. Waveform reconstruction of noisy geoacoustic signal. 

4 Pulse detector 
To detect geophysical signal pulses, an algorithm based on calculating an adaptive 
threshold in disjoint windows of length n is proposed. The current threshold value is 
calculated by averaging the values of the previous n samples using the formula: 

 
,11   kkk BMS   (4) 

 
where Sk is the current window threshold, 1kM  and 1k  are the mean value and standard 
deviation of the previous n sample amplitudes, B is the experimentally determined 
parameter. 

The sequence of n samples is non-contiguous; the samples that are part of the pulse are 
excluded from it. This ensures that the threshold only depends on the background level.  
It was found that for the signals under study, the parameter n value lies in the range from 
200 to 400 samples. A smaller value of the n parameter increases the number of detector 
false responses (type I errors); a larger value of n increases the number of missed  
targets (type II errors). 

It was experimentally established that the parameter B optimal value is in the range 
from 2.1 to 2.5. As the parameter B decreases, false responses become more frequent; when 
parameter B increases, it misses the target. To increase the number of detected pulses, it is 
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advisable to slightly lower this parameter by entering an additional check of the pulse 
waveform. To do this, the pulse is divided into 3 equal parts, within which the average 
amplitude is determined. The signal under study is considered a pulse if the average 
amplitude of one of the parts exceeds the others by more than 1.2 times. This check is based 
on the fact that the pulses have a sharp and very short edge. In this case, the maximum 
pulse amplitude must exceed the Sk threshold value by at least 1.8 times, and the minimum 
pulse duration is 0.1 ms. 

Examples of threshold adaptation are shown in Fig 3. The algorithm adapts the 
threshold value on both the geoacoustic emission signal and the electromagnetic radiation 
signal. 
 

 
Fig. 3. Geoacoustic (a) and electromagnetic (b) emission signals. The dotted line indicates the 
adaptive pulse detection threshold. 

For more precise pulse detection, a “logical filtering” procedure is used [9]. A signal 
fragment identified by the detector threshold scheme as a pulse is checked for the integrity 
of its local maxima and minima sequence. If the length of the continuous sequence of local 
extrema found in this fragment belongs to a specified interval from Nmin to Nmax (determined 
empirically, the minimum value is Nmin = 3, in practice the length of the local extrema 
sequence ranges from 8 to 200 or more), then this signal fragment is taken as the required 
pulse. Conversely, if the number of continuously following one after another local extrema 
goes beyond the specified interval, the counts of the signal fragment are set equal to zero. 
An example of detected geophysical signal pulses is shown in Fig. 4. 
 

 
Fig. 4. Geoacoustic (a) and electromagnetic (b) pulses detected by the algorithm. 

5 Analysis of pulse time-frequency composition 
To analyze time-frequency structure of geophysical signal pulses, it is proposed to use a 
sparse approximation [10]. According to the main idea of this approach, a signal is 
represented in the form of a finite linear combination of elementary functions selected from 
a large, generally linearly dependent set of functions. The difference from a simple 
approximation is that not all functions are included in the decomposition, but only some. 

In contrast to the classical time-frequency analysis methods, which generate redundant 
signal decompositions that include all basis functions, the sparse approximation builds 
compact signal representations without losing accuracy. 
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where s(t) is the signal, )(tgm  are basis functions from a preselected dictionary 

}1:)({  mm gtgD ; ma  are coefficients of decomposition; N is a number of 

components; NR  is an error of decomposition; 0  is the pseudo-norm ( 0L -norm) that is 
equal to the number of nonzero elements of the coefficient vector. 

To solve the sparse approximation problem, it is proposed to use the matching pursuit 
(MP) algorithm [11]. 

To assess the constructed approximations accuracy, the error indicator NERR  is 
calculated using the formula (6): 
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To approximate signals, the authors propose to use parametric dictionaries (sets of 

functions into which a signal is decomposed), consisting of functions described by a 
general analytical expression and a small set of parameters. The main advantages of using 
parametric dictionaries are: 

- the ability to describe signals based on the physical prerequisites for their generation; 
- saving spatial computing resources: a small set of parameters can be stored for a 

parametric dictionary, in contrast to numerically defined dictionaries, for which it is 
required to store the waveform of each basis function. 

Various analytical functions were used to form parametric dictionaries. As a result of 
the experiment [12], it was found that for the studied geophysical signals containing pulses 
similar in waveform, it is required to use dictionaries composed of asymmetric functions 
that allow frequency variation. The Gauss and Berlage functions provide the greatest 
accuracy. 

The main disadvantages of the MP algorithm are, firstly, the need to use huge 
dictionaries to ensure sufficient accuracy of the decompositions, and secondly, the "rough" 
discretization of the basis functions parameters. Therefore, it was proposed to improve the 
classical algorithm so that it was possible to construct decompositions of the required 
accuracy on dictionaries of limited size. Since at each iteration of the algorithm the 
parameters of the atom with the largest scalar product by the signal are determined, the 
matching pursuit iteration can be described as the problem of finding the maximum of a 
function of many variables: 
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The MP algorithm was supplemented with a procedure for setting the parameters p of 
the function that has the greatest correlation with the signal. The developed algorithm was 
named Adaptive Matching Pursuit (AMP). Refinement can be done in different ways. 
During a series of experiments, it was proved that using of the grid search method with a 
separate frequency refinement allows the authors to construct the most accurate 
approximations [13]. 

To visualize the pulse time-frequency structure, the Wigner-Ville distribution is used, 
because its time-frequency resolution minimally depends on the duration of the analyzed 
signal. However, since the transformation is non-linear, the representation shows a strong 
interference component for additive signals. Therefore, it was decided to calculate the 
Wigner-Ville transforms separately for each of the basis functions included in the 
decomposition (5) and to superimpose their representations on the time-frequency plane on 
top of each other. 

The results of sparse approximation of electromagnetic and geoacoustic pulses  
by the AMP algorithm are shown in Fig. 5. 

 

 
Fig. 5. Time-frequency structure of electromagnetic (a) and geoacoustic (b) pulses. 

6 Waveform analysis 
In addition to the different time-frequency composition, the geophysical signal pulses are 
characterized by a wide variety of waveforms. To identify the waveform and to classify 
pulses (in order to reduce their diversity), a method of structural description is proposed. It 
consists in coding pulses with special matrices [9]. According to the method, the pulse 
waveform is described through the relative position of its singular points (local extrema). It 
is assumed that the intermediate values of the signal function lying between the singular 
points are not informative enough, and during the analysis they can be ignored. 

As an example, we consider a typical geoacoustic pulse. We fix the values of the pulse 
local extrema amplitudes {ai} = a0, a1, …, aN and the time intervals between neighboring 
extrema {τi} = τ0, τ1, …, τN-1  (Fig. 6). 
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Fig. 6. Pulse local extrema: local maxima are marked with red dots, local minima are marked with 
blue dots. 

Pulse amplitude-phase structure can be described by a square matrix of the form (8): 
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where ri,j is the result of comparison of the i-th and j-th vales of the extreme amplitudes;  
ωi,j is the result of comparison of the i-th and j-th values of the intervals between the 
extrema. 

We call the matrix D (8) a pulse descriptive matrix. Examples of a pulse and its 
descriptive matrix are illustrated in Fig. 7. 

 

 
Fig. 7. Representation of a pulse by descriptive matrix: (a) – pulse with detected extrema; (b) – its 
descriptive matrix. 
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Descriptive matrices have invariant character under time and amplitude transformations 
that is proved by the following properties: 

- invariance under time compression or expansion (if k > 0 and τi > τj, then τi ∙ k > τj ∙ k); 
- invariance under amplitude compression or expansion (if k > 0 and ai > aj,  

then ai ∙ k > aj ∙ k). 
Pulses are classified accorded to the results of calculation of descriptive matrix 

similarity coefficient. First, we restrict ourselves to descriptive matrices of the same order. 
In order to do that we divide descriptive matrices into groups D(Z) of matrices of the same 
order Z. 

For the two descriptive matrices of the same order D1
(Z) and D2

(Z) the similarity 
coefficient g(D1

(Z), D2
(Z)) is determined as a ratio of elements, coinciding in value and 

taking the same positions, to the total number of elements in the matrix. In case of exact 
identity, the similarity coefficient is 1. 

Classification is the comparison of descriptive matrices of the same size and selection of 
the empirical threshold G0, 0 < G0 ≤ 1 when calculating the similarity coefficient (10). 

 
1 2( ) ( )

1 2 02

#( )
( , ) ,ij ijZ Z d d
g G

Z
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 D D  
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where #(condition) is the operator for calculation of the number of elements satisfying  
the condition, d1ij are the elements of the matrix D1

(Z), d2ij are the elements of the matrix 
D2

(Z), G0 is the empirically defined threshold. 
When calculating the similarity coefficient of descriptive matrices of different orders, it 

should be taken into account that their erratic comparison can lead to random absorption of 
smaller matrices by bigger matrices. We put bounds on the possibility for absorption of 
descriptive matrices of smaller orders by the threshold coefficient S0: 

 
,10,/ 00  SSNN ML  (11) 

 
where NL and NM are the orders of smaller and larger descriptive matrices, respectively, 
S0 is the empirically defined threshold. 

Assume that there are two descriptive matrices D1 and D2 of the orders N1 and N2, 
respectively (N1 ≥ N2). If N2/N1 ≥ S0 (N = S0 · N1), then the matrices are comparable. For the 
meaningful comparison, the matrices D1 and D2 are matched so that the latest N elements of 
the main diagonal D2 are overlapped on the first N elements of the main diagonal D1. Then 
we calculate the similarity coefficient (10) of matrices of the order N in the domain 
bounded by the intersection. Elements are further compared after D2 shift along the main 
diagonal D1. The similarity coefficient (10) is calculated for each subsequent shift so far as 
the matrices in the domain bounded by the intersection have the order of not less  
than N (Fig. 8). The comparison result is the maximum value of the similarity coefficient. 
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Fig. 8. Comparison of descriptive matrices of orders 6 and 5. 

In the result of classification many classes are formed. Each of them unites the pulses 
close in amplitude-phase structure with the accuracy up to the values determined by the 
coefficients G0 and S0. Efficiency of the proposed classification method can be estimated by 
a contraction coefficient 

 
 

output

input

A

A
k  , (12) 

 
where |Ainput| is the alphabet cardinality (number of pulses) before classification,  
|Aoutput| is the cardinality of the alphabet obtained as the result of classification. 

Processing of the data archive of IKIR FEB RAS for 2016−2019 showed that 
contraction coefficient (12) varies from 50 to 200. 

The results of a computational experiment for evaluating the classification algorithm 
noise immunity show that the classification method is nonlinearly sensitive to the choice of 
threshold functions of G0 and S0: decrease of S0 causes pulse redistribution into classes with 
larger-order descriptive matrices and decrease of G0 makes it possible to compact classes. 
Based on the experiment results, the recommended values of the thresholds S0 (from 0.6  
to 0.9) and G0 (from 0.7 to 0.9) were selected. 

Fig. 9 illustrates the results of classification of model signal pulses with the signal/noise 
ratio of 8.9 dB. The signal contains 50 pulses of three different waveforms (in the figure, 
the pulses of one waveform are marked with the same color). Before being classified, each 
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detected pulse was denoised by the selected method of wavelet filtering. Classification 
algorithm thresholds were selected as S0 = 0.6 and G0 = 0.7. For a noisy signal (Fig. 9а)  
we succeeded to define correctly the number of classes and to structure the pulses into  
classes (Fig. 9b). In the course of multiple repetition of the experiment it was discovered 
that the obtained structuring into the classes is stable to the changes of initial conditions of 
white noise generator. 

 

 
Fig. 9. Classification results: (a) – signal with overlapped white noise and initial structuring into 
classes; (b) – classification of S0 = 0.6, G0 = 0.7; three classes were defined. 

7 Conclusions 
The paper discusses the processing and analysis methods for the geoacoustic and 
electromagnetic emission pulse signals recorded for more than 20 years at the IKIR FEB 
RAS geodynamic proving ground (Kamchatka Peninsula). The geophysical signal pulses 
are characterized by a wide variety of waveforms and different time-frequency structures. 

Waveforms of the recorded signals changes under the influence of natural noise, 
artificial interference, nonlinearity of the receiving path, etc. Therefore, to reduce noise and 
to detect signal useful component, wavelet filtration is applied. It was established that the 
best results of pulse waveform reconstruction are obtained using fourth-order Symlet 
wavelets. 

To detect geophysical signal pulses, the algorithm based on calculating the adaptive 
threshold is used. For more precise pulse detection, a "logical filtering" procedure is used. It 
consists in checking the integrity of the local maxima and minima sequence of the detected 
pulse. 

The analysis of geophysical signals is carried out in two directions. The first direction is 
the analysis of their time-frequency structure. To do this the Adaptive Matching Pursuit 
algorithm is used. As the result of its application, geophysical signal is represented in the 
form of a finite linear combination of elementary functions. It was found that for sparse 
approximation of the studied geophysical signals, it is required to use asymmetric functions 
that allow frequency variation, such as the Gauss and Berlage functions. 

The second direction is the analysis of pulse waveforms. To identify the waveform, the 
method of structural decomposition is used. It consists in coding pulses with special 
descriptive matrices. In order to reduce the variety of waveforms, pulses are classified by 
comparing their descriptive matrices. The classification procedure makes it possible to 
reduce the pulse diversity by at least 50 times. 
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detected pulse was denoised by the selected method of wavelet filtering. Classification 
algorithm thresholds were selected as S0 = 0.6 and G0 = 0.7. For a noisy signal (Fig. 9а)  
we succeeded to define correctly the number of classes and to structure the pulses into  
classes (Fig. 9b). In the course of multiple repetition of the experiment it was discovered 
that the obtained structuring into the classes is stable to the changes of initial conditions of 
white noise generator. 

 

 
Fig. 9. Classification results: (a) – signal with overlapped white noise and initial structuring into 
classes; (b) – classification of S0 = 0.6, G0 = 0.7; three classes were defined. 

7 Conclusions 
The paper discusses the processing and analysis methods for the geoacoustic and 
electromagnetic emission pulse signals recorded for more than 20 years at the IKIR FEB 
RAS geodynamic proving ground (Kamchatka Peninsula). The geophysical signal pulses 
are characterized by a wide variety of waveforms and different time-frequency structures. 

Waveforms of the recorded signals changes under the influence of natural noise, 
artificial interference, nonlinearity of the receiving path, etc. Therefore, to reduce noise and 
to detect signal useful component, wavelet filtration is applied. It was established that the 
best results of pulse waveform reconstruction are obtained using fourth-order Symlet 
wavelets. 

To detect geophysical signal pulses, the algorithm based on calculating the adaptive 
threshold is used. For more precise pulse detection, a "logical filtering" procedure is used. It 
consists in checking the integrity of the local maxima and minima sequence of the detected 
pulse. 

The analysis of geophysical signals is carried out in two directions. The first direction is 
the analysis of their time-frequency structure. To do this the Adaptive Matching Pursuit 
algorithm is used. As the result of its application, geophysical signal is represented in the 
form of a finite linear combination of elementary functions. It was found that for sparse 
approximation of the studied geophysical signals, it is required to use asymmetric functions 
that allow frequency variation, such as the Gauss and Berlage functions. 

The second direction is the analysis of pulse waveforms. To identify the waveform, the 
method of structural decomposition is used. It consists in coding pulses with special 
descriptive matrices. In order to reduce the variety of waveforms, pulses are classified by 
comparing their descriptive matrices. The classification procedure makes it possible to 
reduce the pulse diversity by at least 50 times. 

The geophysical signal informational features determined during the analysis can be 
used to search for anomalies in the data, and then establish a relationship between these 
anomalies and deformation process dynamics, in particular, with earthquake development 
processes. 
 
 
The work was carried out according to the Subject АААА-А17-117080110043-4 “Dynamics of 
physical processes in the active zones of near space and geospheres”. 
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