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Abstract. Acoustic and electric responses of near-surface sedimentary rocks
are considered. They were recorded during the deformations by seismic waves
from six earthquakes with magnitude Mw = 6.6−7.7 at the distances of 131-728
km from epicenters in Kamchatka region. Behavior of both responses during
soil displacement and displacement velocity during wave propagation are un-
der the analysis. The dependence of intensity and character of the responses
manifestation on earthquake magnitude and the distance to its source had been
discovered by the authors earlier and is confirmed in the work. It was discov-
ered that the occurrence of acoustic response in kilohertz range correlates well
with the behavior of soil displacement velocity vector and its spectrum.

1 Introduction

Tectonic process is continuous in seismically active regions. It causes changes in stress-strain
state of the earth crust rocks including near-surface ones. Such changes occur at deformation
background regime and during preparation of earthquakes which are a seismic component of
tectono-seismic process as the result of more intensive deformation of rocks under tectonic
forces [1].

When recording geophysical fields at observation sites, one usually deals with near-
surface sedimentary rocks as about 80% of continent surface is covered by them [2]. They
have polydisperse water- and gas-saturated porous structure and are easily deformed due
to the fragmental structure. Stress-strain state changes of these rocks are accompanied by
anomalous disturbances of near-surface fields. To investigate the mechanisms of formation
of such disturbances and possible application as indicators of tectono-seismic process, it is
topical to study the responses of these fields on near-surface sedimentary rock deformation.
In order to observe a significant effect and correspondence of the results to real deformation
process, it is reasonable to carry out the investigations during rock intensive deformations,
not in laboratory experiments, but under conditions of natural occurrence.

Rock intensive deformation is observed during propagaton of seismic waves from earth-
quakes and is accompanied by the transformation of mechanic energy of these waves into the
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energies of different physical fields. Such a deformation was used in [3, 4] to detect and to
investigate jointly seismoelectric and seismoacoustic responses of near-surface sedimentary
rocks. These responses occur as the result of reaction of the whole set of rock fragments,
densely packed and having a wide range of sizes, which are located in the vicinity of an ob-
servation site. The electric and acoustic signals, recorded during longitudinal and transversal
wave propagation, were analyzed in different frequency ranges and their spectrograms were
estimated. These papers did not consider seismically-induced displacement and displacement
velocity of sedimentary rock near-surface layer.

In the paper we compare for the first time the occurrence of acoustic and electric responses
of near-surface sedimentary rocks with the behavior of soil displacement and displacement
velocity. Propagations of longitudinal and transversal waves from six strong (Mw > 6.5)
earthquakes of Kamchatka region at the distances of 131–728 km from epicenters are con-
sidered. The obtained results are important for the investigation of mechanic and electro-
physical properties of near-surface sedimentary rocks and acoustic and electric signals occur-
ring during their deformations.

2 Investigation method

Just like in the papers [3, 4], geo-acoustic and geo-electric observations were carried out at
“Karymshina” site (52.83◦ N, 158.13◦ E) IKIR FEB RAS, located in Verkhne-Paratunskaya
geothermal system of South Kamchatka (Fig. 1). Observation method and our understanding
of generation sources of seismoacoustic and seismoelectric signasl in sedimentary rocks are
described in those papers. It is mentioned that based on the results of drilling, near-surface
rocks in the region of this site are sedimentary, and the layer thickness is about 50 m.

Figure 1. Location of “Karymshina” site (�) and of earthquake epicenters (•), for which seismoacoustic
and seismoelectric signals were analyzed. Earthquake parameters and their numbers are in the table 1.
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In this work, a new approach in the investigation method is application of record frag-
ments from a three-component broad-band velocigraph installed at seismic “Karymshina”
site of Kamchatka Branch of Federal Research Center, Geophysical Survey, Russian
Academy of Sciences, 250 km from our observation point. Three components of soil dis-
placement and displacement velocity were considered on the time interval from two minutes
to the time of longitudinal P-wave arrival and ten minutes after it. The features of sedimen-
tary rock acoustic and electric response manifestations were compared with the behavior of
module of these parameters during seismic wave propagation. As it was noticed in [4], for a
hydrophone, installed in a reservoir filled with water, the P-wave is recorded without signif-
icant distortions as long as in small volumes (1x1x1 m3) refraction may be neglected. Water
does not have form elasticity and the transversal S -wave does not propagate in a water basin
but, causing horizontal and vertical displacements of soil, it affects hydrophone suspension
and manifests in acoustic data. Thus we consider acoustic signals occurring only during
P-waves.

According to the estimates in [5], sources of acoustic signals occurring in sedimentary
rocks at the frequencies from first hundreds of Hz to the first tens of kHz are located at
the distances up to the first tens of meters from the hydrophone. Taking into account this
fact, sedimentary rock layer thickness and the distance between electrodes for electric signal
recording and their depth in soil (10 and 1 m, respectively), we can consider that the observed
seismoacoustic and seismoelectric signals are generated in near-surface sedimentary rocks.

From January 2016 to March 2020, during the measuring system operation, six earth-
quakes with Mw > 6.5 occurred in Kamchatka region. Their parameters, which were taken
from NEIC catalogue (https://earthquake.usgs.gov/earthquakes/search/), are listed in the ta-
ble. It also shows epicentral and hypocentral distances to our site and the difference of lon-
gitudinal and transversal wave arrival to seismic “Karymshina” site. Location of earthquake
epicenters and their numbers (see the table 1) are illustrated in Fig. 1.

Table 1. Parameters of earthquakes during which seismoacoustic and seismoelectric signals were
analyzed. R, D are epicentral and hypocentral distances; (S -P) is the difference of longitudinal and

transversal wave arrival times.

No.
Earthquake

Epicenter
coordinates Depth, Magni- R, D, S -P,

Date, Time,
Lat.◦ N Long.◦ E

km tude km km s
UTC UTC (mww)

1 2016-01-30 03:25:12 53.978 158.546 177 7.2 131.1 220.2 22.7
2 2017-03-29 04:09:24 56.940 162.786 17.0 6.6 544.8 545.0 58.2
3 2017-07-17 23:34:13 54.443 168.857 10.0 7.7 727.8 727.9 –
4 2018-10-13 11:10:22 52.855 153.243 461.0 6.7 327.8 565.7 55.1
5 2018-12-20 17:01:55 55.100 164.699 16.6 7.3 497.5 497.8 47.8
6 2020-03-25 02:49:21 48.964 157.696 57.8 7.5 430.2 434.0 43.8

3 Results and discussion

Due to the small amplitude of acoustic and electric signals (compared to noise) and absence
of the possibility of their qualitative analysis, seismoacoustic and seismoelectric responses
of sedimentary rocks were not considered for earthquakes No. 2, 3, 4. Fig. 1-4 show the
spectrograms of acoustic and electric signals recorded during seismic wave propagation from
earthquakes No. 1, 5, 6 (table 1). As it is clear from Fig. 2a, propagation of P-wave from
earthquake No. 1 was accompanied by acoustic energy emission in three frequency clusters.
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Besides the low-frequency cluster of about up to 100 Hz, there are two clusters at the fre-
quencies of about 0.1–1 kHz and 1—11 kHz. They indicate transformation of low-frequency
energy of elastic seismic waves into significantly higher-frequency energy of acoustic emis-
sion of sedimentary rocks located near the hydrophone. According to the signal spectrograms
(Fig. 2b,c), electric energy was emitted at the frequencies up to 15–20 Hz during P- and S -
waves. The emission energy was greater in E −W channel.

Figure 2. Spectrograms of acoustic (As) and electric Es (N-S), Es (E-W) signals recorded during seis-
mic wave propagation from earthquake No. 1 (Fig. 1, table 1). Arrows indicate the times of earthquake
T0 and longitudinal (P) and transversal (S ) wave arrival to the seismic “Karymshina” station.

Fig. 3 illustrates the results of analysis of acoustic and electric signals recorded during
seismic wave propagation from earthquake No. 5. In contrast to earthquake No. 1 (Fig. 2a),
there are no kilohertz acoustic clusters during P-wave (Fig. 3a). Electric response of sedimen-
tary rocks is observed at the frequencies up to 20–22 Hz during the propagation of both types
of waves and only in N−S channel (Fig. 3b,c). Moreover, response intensity is higher during
P-wave. A strong short-term signal in the time interval 83.61–83.75 s (Fig. 3b,c) is caused by
a group of strong atmospherics according to electromagnetic observations of “Karymshina”
site.

Fig. 4 shows the results of analysis of acoustic and electric signals recorded during seis-
mic wave propagation from earthquake No. 6. According to Fig. 4a, during the P-wave,
besides the low-frequency acoustic cluster of up to 100 Hz, higher-frequency cluster is ob-
served at the frequencies of about 0.1–1 kHz, but there is no cluster at the frequencies of
1–11 kHz just like during earthquake No. 1. Sedimentary rock electric response manifests
at the frequencies up to 20–22 Hz almost with the same intensity at both channels and only
during the S -wave (Fig. 4b,c).

Fig. 5 presents the behavior of displacement vector module |S |, displacement velocity
vector module |V | and spectral density of displacement velocity vector module S x of soil
during P-wave from earthquakes No. 1, 5, 6. When comparing |S | values (Fig. 5a,d,g), it
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is clear that the greatest displacement of soil is observed during earthquake No. 1. Average
|S | values during these earthquakes differ by not more than 3 times. There is significant
difference in |V | behavior (Fig. 5b,e,h). As it is clear from Fig. 5b, during earthquake No. 1
there are well defined high-amplitude |V | variations the frequency of which is 3.0 Hz (Fig. 5c).
There are no such |V | variations during earthquakes No. 5 (Fig. 5e,f), but they are evident
during earthquake No. 6 within the time interval of 0–20 s (Fig. 5h, selection). Behavior of
|V | and its spectral density S x during this time interval are illustrated in detail in Fig. 6. It is
clear that there are |V | variations at the frequency of 2.3 Hz (Fig. 6b) during earthquake No. 6
(Fig. 6a).

Thus, despite of the close magnitudes for earthquakes No. 1, 5, 6, sedimentary rock
acoustic response manifests in different ways. It is likely to be associated with different
distances to earthquake hypocenters D. Indeed, the greatest, still evident frequency of this
response during earthquakes No. 1, 6 and 5 reaches 11 kHz, 1 kHz and 100 Hz, respectively,
and D increases as 220, 434 and 498 km. Evidently, seismic wave attenuates that is confirmed
by |S | and |V | amplitude decrease during the P-wave from these earthquakes (Fig. 5a,g,d and
b,h,e, respectively). Small amplitude of acoustic and electric signals during earthquakes No.
2, 3, 4, which was mentioned above, can be explained by the dependence of manifestation
of sedimentary rock acoustic and electric responses on earthquake magnitude [3, 4] and the
longest distance to the hypocenter in case of earthquake No. 3.

Occurrence of sedimentary rock high-frequency acoustic response (Fig. 2a, 4a) may be
associated with the variations of soil displacement velocity vector module |V |, which were
observed during the P-wave from earthquakes No. 1, 6 (Fig. 5b, 6a). As it was said above,
these variations were at the frequency of 3.0 and 2.3 Hz, respectively. They were absent
during earthquake No. 5 when there was no such a response. We think that the difference
of these frequencies indicates natural origin of the variations which can be associated with
relative slippages of sedimentary rock fragments during deformation intensification. During
deformation and acoustic observations at “Karymshina” site [6] it was discovered that acous-
tic signals in kilohertz frequency range are generated in the result of rock fragment adhesion
loss and slippages.

Electric response of sedimentary rocks as acoustic one also manifested in different ways.
It is observed in both measuring channels (Fig. 2b,c; 4b,c) or only in one (Fig. 3b,c). This
response is clear during P- and S -wave (Fig. 2b,c; 3b) or during only S -wave (Fig. 4b,c).
In [3, 4] the dependence of rock electric response on earthquake amplitude was discovered.
Its intensity in measuring channels (response anisotropy) is associated with location of earth-
quake epicenter relatively the site [3, 4]. Evidently, the efficiency of seismoelectric trans-
formation depends on sedimentary rock structure and texture. According to [7], it is also
mainly determined by their stress-strain state which varies with time. Thus, electric response
manifestation in sedimentary rocks could be affected by different time of occurrence of earth-
quakes No. 1, 5, 6 (table 1).

To find the statistical significance of the obtained results, we need to continue the acoustic
and electric observations during other strong earthquakes of different magnitude and with
different location of hypocenters relatively the site.
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Figure 6. Behavior of displacement velocity vector module |V | (a) and its spectral density S x (b) during
the time interval selected by the rectangular in Fig. 5h.

4 Conclusions
We have suggested a new method for joint investigation of near-surface sedimentary rock
acoustic and electric responses occurring during deformations by seismic waves from earth-
quakes. The method includes simultaneous recording of these responses and comparison of
the features of their manifestation with the behavior of three components of soil displacement
and displacement velocity during longitudinal and transversal wave propagation from strong
earthquakes at observation site region.

Applying this method we considered the manifestations of near-surface sedimentary rock
acoustic and electric responses during deformations by seismic waves from six earthquakes
with the magnitudes of Mw = 6.6–7.7 and the distances of 131–728 km from epicenters in
Kamchatka region. We have confirmed the earlier discovered dependence of intensity and the
character of response manifestation on earthquake magnitude and the distance to its source.
It was detected that acoustic response occurrence in kilohertz frequency range agrees well
with the behavior of soil displacement velocity vector module and its spectrum.

The obtained results are interesting for the investigation of mechanic-acoustic and
mechanic-electric transformations appearing during tectono-seismic deformation of widely
spread near-surface sedimentary rocks.

The authors appreciate Kamchatka Branch of FRC GS RAS for the data on soil displace-
ment and displacement velocity at “Karymshina” site during the earthquakes under consider-
ation.
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