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Abstract. In the dynamic model αΩ-dynamo the change in the intensity of the α-
generator under the action of external forces is considered as a result of synchroniza-
tion of higher modes of the velocity field and the magnetic field and is regulated by the
function Z(t) with an exponential-power kernel J(t). Depending on the choice of the
exponent and the scale factor of the kernel determine its temporal characteristics: delay
time and waiting time. The question of changing the modes of magnetic field genera-
tion depending on the temporal characteristics of the function’s kernel is investigating.
In the dynamic model αΩ-dynamo the change of the α-generator intensity under the ac-
tion of external forces is considered as a result of synchronization of higher modes of
the velocity field and the magnetic field and is regulated by the function Z(t) with an
exponential-power kernel J(t). Depending on the choice of the exponent and the scale
factor of the kernel J(t) determine its temporal characteristics: delay time and waiting
time. The question of changing the modes of magnetic field generation depending on the
temporal characteristics of the function’s kernel is investigating.

1 Introduction

The magnetic fields of planets, stars, galaxies undergo changes over time, which are both chaotic and
periodic characters. The study of the nature of the occurrence of a magnetic field and the modeling of
various modes of its generation, including with a sharp change in the polarity of the field dipole com-
ponent (reversals), is an intensively developed section of the dynamo theory. Reversals without sig-
nificant rearrangement of the motion of the conducting medium are of the great interest. The study is
carried out both using direct numerical modeling, and on the basis of simplified low-dimensions mod-
els, which try to explain the physical cause, signs, and most important properties of this phenomenon
[1–3]. In our work, we use the low-mode model αΩ-dynamo [4] to study the modes of magnetic field
generation, including those with a change of polarity without convection rearrangement. This model
is applied to earth-type objects, which are characterized by a strong differential rotation of the object
itself and the turbulent nature of the movement of the conducting medium [1, 2, 5]. In the frame-
work to this model the research is carried out using a dimensionless magnetohydrodynamic system
(MHD-system) with a time scale comparable to the time of magnetic field dissipation. The introduc-
tion of a variable intensity α-generator should ensure the appearance of new modes of magnetic field
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generation. This article is devoted to the numerical simulation dimensionless MHD-system within
the accepted constraints of the αΩ-dynamo model subject to additive correction of the α-effect inten-
sity by the integrated function with exponential-power kernel and to the study dynamics of changing
generation modes of the magnetic field depending on its temporal characteristics

2 Formulation of the problem

We consider the model αΩ-dynamo, in which a spherical shell with the center at the origin, bounding
the liquid core of the Earth, rotates around the axis Oz with a constant angular velocity Ω.

The velocity field v of a viscous incompressible fluid of the outer core and the generated magnetic
field are axially symmetric. We assume that the average flow v has the character of differential rotation
in the field of external forces with mass density fout [1, 2].

The inner boundary of the liquid core shell has a radius of r = r1, and the outer boundary has a
radius of r = r2 (r1 < r2), at which the velocity field of the viscous liquid v is zero (conditions of
adhesion). The magnetic permeability of the inner and outer cores is the same, the medium outside
the outer core (r > r2) is non-conducting.

The physical parameters of the shell are assumed to be unchanged, the turbulence in the core
is isotropic. The turbulent α-effect is antisymmetric relativly to the equator and we use its scalar
parameterization as a function α(r, θ) = α0a(r) cos θ = α0α

′(r, θ), where the positive coefficient α0
determines the intensity of the α-effect, α′(r, θ) – dimensionless value, the radial component of a(r)
satisfies the condition max|a(r)| ∼ 1.

In accordance with the accepted provisions, the dynamo model will be described by MHD-
equations, including the Navier-Stokes equation, the magnetic field B induction equation taking
into account the turbulent α-effect, continuity condition of the velocity field v, the magnetic field
solenoidality condition, and boundary conditions. In the Boussinesq approximation, the MHD-system
takes the following form

∂v
∂t
+ (v∇)v + fc = ν∆v − 1

ρ0
∇P − fK + fout + fL,

∂B
∂t
= ∇ × (v × B) + ∇ × (α(r, θ) B) + νm∆B,

∇v = 0,
∇B = 0,
v(r1) = v(r2) = 0,

(1)

where P is pressure, ρ0 = 7 · 103 kg/m3 – density, ν – kinematic viscosity (limits of change 10−6 ÷
102 m2/sec), νm – magnetic viscosity (varies within 1 ÷ 20 m2/sec), fout – mass density of the external
forces field (source of poloidal velocity), r1 and r2 – radii-vectors of the inner and outer boundaries
of the spherical shell of the liquid core, respectively, mass density of the Coriolis force

fK = 2Ω × v, (2)

the mass density of the Lorentz force

fL =
1
ρ0µ0µ

(∇ × B) × B, (3)

the acceleration of the centrifugal force

fc = Ω × (Ω × r) , (4)

2

E3S Web of Conferences 196, 02030 (2020)	 https://doi.org/10.1051/e3sconf/202019602030
STRPEP 2020



generation. This article is devoted to the numerical simulation dimensionless MHD-system within
the accepted constraints of the αΩ-dynamo model subject to additive correction of the α-effect inten-
sity by the integrated function with exponential-power kernel and to the study dynamics of changing
generation modes of the magnetic field depending on its temporal characteristics

2 Formulation of the problem

We consider the model αΩ-dynamo, in which a spherical shell with the center at the origin, bounding
the liquid core of the Earth, rotates around the axis Oz with a constant angular velocity Ω.

The velocity field v of a viscous incompressible fluid of the outer core and the generated magnetic
field are axially symmetric. We assume that the average flow v has the character of differential rotation
in the field of external forces with mass density fout [1, 2].

The inner boundary of the liquid core shell has a radius of r = r1, and the outer boundary has a
radius of r = r2 (r1 < r2), at which the velocity field of the viscous liquid v is zero (conditions of
adhesion). The magnetic permeability of the inner and outer cores is the same, the medium outside
the outer core (r > r2) is non-conducting.

The physical parameters of the shell are assumed to be unchanged, the turbulence in the core
is isotropic. The turbulent α-effect is antisymmetric relativly to the equator and we use its scalar
parameterization as a function α(r, θ) = α0a(r) cos θ = α0α

′(r, θ), where the positive coefficient α0
determines the intensity of the α-effect, α′(r, θ) – dimensionless value, the radial component of a(r)
satisfies the condition max|a(r)| ∼ 1.

In accordance with the accepted provisions, the dynamo model will be described by MHD-
equations, including the Navier-Stokes equation, the magnetic field B induction equation taking
into account the turbulent α-effect, continuity condition of the velocity field v, the magnetic field
solenoidality condition, and boundary conditions. In the Boussinesq approximation, the MHD-system
takes the following form

∂v
∂t
+ (v∇)v + fc = ν∆v − 1

ρ0
∇P − fK + fout + fL,

∂B
∂t
= ∇ × (v × B) + ∇ × (α(r, θ) B) + νm∆B,

∇v = 0,
∇B = 0,
v(r1) = v(r2) = 0,

(1)

where P is pressure, ρ0 = 7 · 103 kg/m3 – density, ν – kinematic viscosity (limits of change 10−6 ÷
102 m2/sec), νm – magnetic viscosity (varies within 1 ÷ 20 m2/sec), fout – mass density of the external
forces field (source of poloidal velocity), r1 and r2 – radii-vectors of the inner and outer boundaries
of the spherical shell of the liquid core, respectively, mass density of the Coriolis force

fK = 2Ω × v, (2)

the mass density of the Lorentz force

fL =
1
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(∇ × B) × B, (3)
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µ0 = 4π · 10−7 H/m is magnetic constant, µ = 1 – magnetic permeability, the angular velocity Ω0
varies within 10−1 ÷ 10 1/sec.

The system (1) at constant intensity α-effect α0 defines the damped and regular modes and un-
limited increase of the field (Fig. 2 a). The change of the intensity α0 over time under the action of
external forces is determined by including to the dynamic system (1) additive correction as a function

Z(t) =

t∫

0

J(t − τ)Q(B(τ),B(τ)
)
dτ. (5)

The function (5) has the velocity dimension [m/sec], as does the function α(r, θ), and is used to
regulate the degree of turbulent effect influence by delaying and/or inhibition its impact. The nature
of such an impact is determined by the dimensionless kernel J(t − τ).

We introduce the characteristic values of the speed u0 [m/sec] and the linear dimension of the
area r2 [m] (radius of the outer core). As a unit of time, we use the dissipation time of the magnetic
field in the absence of external influences L2/νm [sec] (the order is 104 years). The transformation to

new timescale is defined by the ratio t =
L2

νm
t′. To reduce the number of variable system parameters,

we choose the values of magnetic induction B0 [T], pressure P0 [PA], the mass density of external
forces f0 [N/kg] so that the coefficients in the Navier-Stokes equation for the pressure gradient, the
mass density of external forces and the Lorentz force were equal to ones. Taking into account that
(v∇)v = 0, becouse in the model a normal modes of the small amplitude for a viscous rotating liquid
is considers [4], the MHD-system (1) in a dimensionless form shall written as follows

∂v
∂t
= Pm∆v − ∇P − E−1Pm(ez × v) + fout + (∇ × B) × B,

∂B
∂t
= Rem[∇ × (v × B)] + (Rα − Z(t))[∇ × α′(r, θ)B)] + ∆B,

∇v = 0,
∇B = 0,
v
(r1

r2

)
= v(e2) = 0.

(6)

3 The numerical simulation
We use a low-mode approximation for the numerical implementation of the system (6). Let’s limit to
the minimum number of modes sufficient to obtain reversals in the model αΩ-dynamo with variable
intensity α-generator [6–9],

v = u(t)v0(r) = u(t)(α1vT
0,1,0 + α2vP

0,2,0 + α3vT
0,3,0 + α11vT

1,1,0 + α13vT
1,3,0), (7)

B = BT
2(t)B

T
0,2,0(r) + BP

1 (t)BP
0,1,0(r) + BP

3 (t)BP
0,3,0(r), (8)

where v0(r) is Poincare mode represented as an expansion in a hilberoth subspace such that v0(r)| = 1,
u(t) – the velocity amplitude, BP

0,1,0(r) – the dipole component of the magnetic field, which generates
a toroidal BT

0,2,0(r) and a poloidal BP
0,3,0(r) components under the influence of differential rotation [3].

The velocity field and magnetic field components are considered independent.
The function Z(t) (5) is set as

Z(t) =

t∫

0

(t − τ)ne−b(t−τ)B2(τ)dτ, (9)
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where the nature of the impact is determined by the exponential-power kernel J(t) = tne−bt. In compar-
ison with the exponential function of the form e−bt, the maximum of the exponential-power function
is shifted by the value t0 – the delay time (Fig. 1), i. e., the influence of the process that inhibition the
intensity of the α-effect is turned on at the time shifted by the final delay time. The final waiting time
tm = t1 − t0 is determined from the ratio

t1∫

t0

tne−btdt = 0.95

∞∫

t0

tne−btdt. (10)

Geometrically, this means that 95% of the area under the graph of the function is concentrated on this
segment (Fig. 1).

Substituting in the system (6) decompositions (7), (8) and the function (9). After applying the
Galerkin method, we get the system

∂u
∂t
= −Pmu(t)

∑
k
α2

kλk + fout +
∑

i, j, k
αiLi jkBjBk,

∂Bi

∂t
= Remu(t)

∑
j, k
α jWi jkBk − µiBi + (Rα − Zn)

∑
k

WαikBk,

∂Z0

∂t
=
∑
k

B2
k − bZ0,

∂Zn

∂t
= nZn−1 − bZn, n = 1, 2, . . .

(11)

where µi is the coefficient of viscous dissipation, λi is the eigenvalues of the Poincare mode, and the
coefficients Li jk, Wi jk, Wαi j are the volume integrals of the fields under consideration. The implicit
Euler and the explicit four-step Runge-Kutta methods are used for numerical implementation of the
system (11). The sampling step h is set to 10−5. The initial conditions for the system to exit the rest
point at time t = 0 and generate the remaining components of the magnetic field are accepted

u(0) = 1, BT
2 (0) = 0, BP

1 (0) = 1, BP
3 (0) = 0, Z0(0) = 0, Zn(0) = 0, n = 1, 2, . . . (12)

The control parameters of the model, the magnetic Reynolds number Rem and the amplitude of
α-effect Rα, were set in the ranges (0, 1000] and (0, 100], respectively. The calculations were carried
out for the values of the scale factor b = 0.1, 0.5, 1, 5, 10 and the values of the exponent n = 1, 2.
Both methods for given parameters of the model gave identical results, which are presented on the
phase plane of the parameters Rem, Rα (Fig. 2 b-f, Fig. 3).

The results obtained for n = 1 show, that for the values of the scale coefficient b of the kernel J(t)
of the function Z(t), that do not exceed one, on the phase plane of the parameters Rem, Rα the area of
divergence of the magnetic field increases, and at 0.5 ≤ b ≤ 1, the dynamo-burst regions appear with
small inclusions of the regions of the regular mode of magnetic field generation. For values b > 1, the
region of steady mode generation becomes the same as it was for the case of constant intensity α-effect
α0, and the regions of steady-state and steady modes and vasillation mode appear at 0 < Rem < 100
and 0 < Rα < 25.

Consequently, as values of the scale coefficient b increase, regions with the mode of dynamo-burst
are gradually replaced by the regions of the steady mode (Fig. 2 c-f) and increase to the size of the
steady mode generation region obtained with constant intesivity α0 (Fig. 2 a), and small regions of the
steady-state mode and vasillation mode appear for Rem < 100, Rα < 25. Such changes are related to
the temporal characteristics of the function Z(t) kernel. When the scale factor values are close to zero
(b < 0.5), the values of the delay time t0 and the waiting time (process memory) tm increase to the
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Table 1. Temporal characteristics of the function J(t) = tne−bt

n b delay time t0 waiting time tm

1

0.1 10 37.695207
0.5 2 7.539041
1 1 3.769521
5 0.2 0.753904

10 0.1 0.376952

2

0.1 20 44.675701
0.5 4 8.935140
1 2 4.467570
5 0.4 0.893514

10 0.2 0.446757

order of 10 and more (Table 1), and the value of the integral from J(t) also increases. The impact of
the process Z(t) on the intensity of α-effect with a long time delay t0 leads to an unlimited increase in
the magnetic field, i. e., the process does not have time to slow down the growth of the magnetic field.
When b ≥ 1, the values of the delay times t0 and the waiting times tm quickly decrease from units to
close to zero (Table 1). Such a small time shift and at the same time a small impact in comparison
with the case of b < 1 allows a turbulent effect with variable intensivity on the interval Rα ∈ (0, 30]
to bring the magnetic field to stable oscillations without unlimited increase, including with reversals.
However, for the values of Rα ≤ 10 for all values of b, the turbulent generator does not output the
magnetic field from the damped mode.

Consequently, under otherwise identical conditions of a numerical experiment, the variety of mag-
netic field generation modes at a weakly varying velocity field increases with an increase in the scale
factor b, when the time of the gradual increasing impact of the process Z(t) and force of that impact
are decrease.

For exponent n = 2, a pattern similar to the case of exponent n = 1 is observed. Note, that here we
obtain a damped mode and a mode of unlimited growth of the magnetic field already at b < 1, when
the increasing effect of the process Z(t) is the largest and significantly prolonged over time. When
the scale factor values b > 1, the delay time t0 < 1 and the waiting time are also reduced, which
leads to small changes in the turbulent effect and the picture on the phase plane becomes similar to
the case with a constant α-effect intensity, only in the region where Rem < 100, steady, steady-state
and vacillation mode appear, which occupy smaller areas on the phase plane in comparison with the
case when n = 1.

Thus, the inclusion of an additive correction of the α-effect intensity with the kernel as an
exponential-power function leads to an increase in the region of the magnetic field divergence at a
fixed exponent n and at a decrease in the scale coefficient b, i. e., with an increase in the delay time.
When the value b increases, the delay time t0 and the waiting time decrease, so the effect of the Z(t)
process on the α-effect intensity becomes insignificant over time, and therefore the picture on the
phase plane becomes similar to the case with constant intesivity α0. When the exponent n increases
and the respectively scale coefficients b is equal, the delay time and the degree of the process im-
pact on the α-effect intensity increases, which leads to the predominance of two generation modes –
damped and unlimited growth, even when value of the coefficient b increases. Besides, at the values of
the parameter Rα ≤ 10, the additional inhibitory impact of the process Z(t) does not lead to a decrease
in the region of magnetic field attenuation at any values n and b.
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4 Conclusions

In the framework of the accepted low-mode model αΩ-dynamo, a dimensionless MHD-system with
an additive correction of the α-effect intensity is considered under the assumption of axial symmetry
of the velocity field and the magnetic field. The time scale is chosen equal to the time of magnetic field
dissipation under the influence of an external force and in the absence of further additional influences.
The influence of the turbulent α-effect is determined by a function Z(t) with an exponential-power
kernel of the form tne−bt, which specifies a process with a delay time of t0 and a limited waiting
time of tm.

The results of calculations showed that the inclusion of the process Z(t) into the MHD-system
leads to the appearance of new modes of magnetic field generation in comparison with the case of
constant intensity α0, including with reversals. When the delay time t0 decreases (the scale factor b
increases), the region of non-divergent oscillations increases. An increase in the exponent n is as-
sociated with an increase in the delay time t0 and leads to an expansion of the region of unlimited
oscillations at an increase in the scale coefficient b.

Thus, an increase in the values of the temporal characteristics of the exponential-power kernel J(t)
reduces the number of generation modes with a predominance of an unlimited increase the magnetic
field, but practically does not affect the region of damped oscillations, only slightly increases it
at values b < 1. Reducing the values of the temporal characteristics of the kernel J(t) increases
the number of generated magnetic field modes and reduces the region of unlimited increase in the
magnetic field, and the steady oscillations at Rem > 100 gradually occupy the same region on the
phase plane as at constant intensity, gradually slightly increasing it in the direction of increasing the
values of Rα.

The paper was carried out within the framework on the subject «Dynamics of physical processes in
active zones of near space and geospheres» (AAAA-A17-117080110043-4)
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Figure 1. The exponential-power function J(t) graph.
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Figure 2. The nature of magnetic field generation depending on the parameters Rα and Rem. The α-effect
intensity: a) constant - α0; in other cases is defined by the function Z(t) with the kernel: b) J(t) = te−0,1t,
c) J(t) = te−0,5t, d) J(t) = te−t, e) J(t) = te−5t, f) J(t) = te−10t. The white region is the generation of the increases
infinitely magnetic field, the red one – is the generation of a damped magnetic field, the green is the steady
mode of magnetic field generation, the blue is the steady-state mode, the yellow is the vacillation, the lilac is the
dynamo-burst.
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Figure 3. The nature of magnetic field generation depending on the parameters Rα and Rem. The α-effect
intensity is defined by the function Z(t) with the kernel: a) J(t) = t2e−0,5t, b) J(t) = t2e−t, c) J(t) = t2e−5t,
d) J(t) = t2e−10t. The white region is the generation of the increases infinitely magnetic field, the red one – is
the generation of a damped magnetic field, the green is the steady mode, the blue is the steady-state mode, the
yellow is the vacillation, the lilac is the dynamo-burst.
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