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Abstract. In order to improve the quality of recognition of ionograms, the
use of  general knowledge about the reference marking of  ionograms at

various points of installation of ionosondes of the same type is considered.
On  the  basis  of  reference  markings  from two  ionosondes,  deep  neural

networks were trained to highlight reflection traces from different layers of
the ionosphere. The resulting deep neural networks have been successfully

applied to recognize ionograms of another type of ionosonde. The results
of recognition are presented.

1 Introduction

In works [1, 2], it is proposed to apply deep learning for recognition of ionograms and
to further distinguish ionospheric parameters based on recognized layers. An outstanding

feature of the new method proposed by the authors in [1] is the use of deep learning to
recognize traces of reflections from different layers of the ionosphere. Deep neural network

learning  is  realized  on  the  basis  of  reference  markings  created  by  operators.  Thus,
ionosonde “Parus-A” [3] has been operated at the Institute of Cosmophysical Research and

Radio Wave Propagation since August 2015. It records ionograms every 15 minutes. The
operators, interpreting and processing ionograms, make ionogram marking at the beginning

of every hour. On average, three out of four ionograms for each hour are unprocessed by
the operators. About 40000 ionograms have been processed during the time of “Parus-A”

functioning.  They  are  the  basis  for  deep  neural  network  learning.  The  operators  mark
ionospheric parameters on the ionograms and detect, when possible, reflection traces from

E, F1 and F2 layers of the ionosphere.
The problem of recognition of reflection traces from different ionospheric layers may be

referred to the class of object segmentation on images. By the present time, scientists have
developed  different  architectures  for  deep  neural  networks,  which  are  used  for  object

segmentation  on  images  (for  example,  U-Net  [4],  Mask  R-CNN  [5],  Deep  Watershed
Transform [6]  etc.).  Currently,  the architecture  of  deep neural  network U-Net has been

chosen  to  detect  the  reflection  traces  from  different  ionospheric  layers.  In  order  to
recognize the reflection traces from ionospheric E, F1 and F2 layers, we trained a separate

deep neural  network (DNN) for each layer  and used black-and-white masks marked by

operators. We used dice-coefficient loss (DCL) function: 
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of  ionogram layer  points  marked  by  operators  and  Y –  is  a  set  of  detected  by  DNN

ionogram layer points. We used 10 percent of all examples to create a validation dataset.
Currently,  we have obtained the following results of the DCL function evaluation for a

validation dataset when compressing an ionogram to a size of 64x48 pixels:
a) for DNN for F2 layer recognition DCL is 0.10842;

b) for DNN for F1 layer recognition DCL is 0.16890;
c) for DNN for E layer recognition DCL is 0.15796.

It should be noted that the total number of training examples for layers F1 and E was
smaller compared to layer F2, since at night layers F1 and E disappear and are not labeled

by operators. To make a decision on the need to recognize traces of reflection from the F1
and E layers, the following rule is used: if the solar altitude at the moment of formation of

the ionogram at the installation place of the ionosonde is less than the set threshold, then
recognition of traces of reflection from the layers is not performed [2].

2 Training the deep neural  networks based on data from two
different ionospheric stations

In order to check how the recognition accuracy of the ionosphere layers changes when
using  data  from  various  stations,  data  were  taken  from  the  ionosonde  “Parus-A”  in

Paratunka  in  Kamchatka  (40000  marked  ionograms)  and  data  from  the  ionosonde
“Parus-A” in Moscow (74350 marked ionograms).

The following results were obtained on estimating the loss function on the validation set
of ionograms when they are compressed to a size of 64x48 pixels:

a) for DNN for F2 layer recognition DCL is 0.10347;
b) for DNN for F1 layer recognition DCL is  0.15518;

c) for DNN for E layer recognition DCL is 0.11761.
Thus, the recognition accuracy of the F2 layer was improved by ~ 1.0478 times, the

recognition  accuracy  of  the  F1  layer  was  improved  by  ~  1.088  times,  the  recognition
accuracy of the E layer was improved by ~ 1.343 times. The results are compared when

using data from two ionospheric stations (Paratunka and Moscow) with data from only one
Paratunka ionospheric station.

Consider the process of layer-by-layer recognition of ionospheric layers in ionograms.
We use strategy in which each layer of the ionosphere after it is recognized in the ionogram

image  is  removed  to  more  accurately  recognition  of  the  subsequent  layers  of  the
ionosphere. The following sequence of layer recognition was taken: first, the F2 layer is

recognized and the recognized pixels of the F2 layer are removed from the analyzed image
of  the  ionogram; then,  layer  E is  recognized  and  the recognized  pixels  of  layer  E are

removed from the analyzed image of the ionogram; then layer F1 is recognized. The results
of applying this sequence made it possible to improve the loss function for recognizing the

F1 layer, while the loss function for recognizing the F2 and E layers did not practically
change. Thus, the recognition accuracy of the F1 layer was improved by ~ 1.12 times.

3 Using trained deep neural networks to recognize ionograms
from a different type of ionosonde

In Kamchatka (Paratunka), the PCS4 FMCW ionosonde (Figure 1) functions, which is
significantly  inferior  in  the  quality  of  the  produced  ionograms in  comparison  with  the

ionosonde "Parus-A", but at the same time makes ionograms 5 times more often in time
(every 3 minutes in comparison with every 15 minutes of ionosonde "Parus-A"). There are

no reference markings for the PCS4 FMCW ionosonde, but there are many ionograms, the
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of  ionogram layer  points  marked  by  operators  and  Y –  is  a  set  of  detected  by  DNN

ionogram layer points. We used 10 percent of all examples to create a validation dataset.
Currently,  we have obtained the following results of the DCL function evaluation for a

validation dataset when compressing an ionogram to a size of 64x48 pixels:
a) for DNN for F2 layer recognition DCL is 0.10842;

b) for DNN for F1 layer recognition DCL is 0.16890;
c) for DNN for E layer recognition DCL is 0.15796.

It should be noted that the total number of training examples for layers F1 and E was
smaller compared to layer F2, since at night layers F1 and E disappear and are not labeled

by operators. To make a decision on the need to recognize traces of reflection from the F1
and E layers, the following rule is used: if the solar altitude at the moment of formation of

the ionogram at the installation place of the ionosonde is less than the set threshold, then
recognition of traces of reflection from the layers is not performed [2].

2 Training the deep neural  networks based on data from two
different ionospheric stations

In order to check how the recognition accuracy of the ionosphere layers changes when
using  data  from  various  stations,  data  were  taken  from  the  ionosonde  “Parus-A”  in

Paratunka  in  Kamchatka  (40000  marked  ionograms)  and  data  from  the  ionosonde
“Parus-A” in Moscow (74350 marked ionograms).

The following results were obtained on estimating the loss function on the validation set
of ionograms when they are compressed to a size of 64x48 pixels:

a) for DNN for F2 layer recognition DCL is 0.10347;
b) for DNN for F1 layer recognition DCL is  0.15518;

c) for DNN for E layer recognition DCL is 0.11761.
Thus, the recognition accuracy of the F2 layer was improved by ~ 1.0478 times, the

recognition  accuracy  of  the  F1  layer  was  improved  by  ~  1.088  times,  the  recognition
accuracy of the E layer was improved by ~ 1.343 times. The results are compared when

using data from two ionospheric stations (Paratunka and Moscow) with data from only one
Paratunka ionospheric station.

Consider the process of layer-by-layer recognition of ionospheric layers in ionograms.
We use strategy in which each layer of the ionosphere after it is recognized in the ionogram

image  is  removed  to  more  accurately  recognition  of  the  subsequent  layers  of  the
ionosphere. The following sequence of layer recognition was taken: first, the F2 layer is

recognized and the recognized pixels of the F2 layer are removed from the analyzed image
of  the  ionogram; then,  layer  E is  recognized  and  the recognized  pixels  of  layer  E are

removed from the analyzed image of the ionogram; then layer F1 is recognized. The results
of applying this sequence made it possible to improve the loss function for recognizing the

F1 layer, while the loss function for recognizing the F2 and E layers did not practically
change. Thus, the recognition accuracy of the F1 layer was improved by ~ 1.12 times.

3 Using trained deep neural networks to recognize ionograms
from a different type of ionosonde

In Kamchatka (Paratunka), the PCS4 FMCW ionosonde (Figure 1) functions, which is
significantly  inferior  in  the  quality  of  the  produced  ionograms in  comparison  with  the

ionosonde "Parus-A", but at the same time makes ionograms 5 times more often in time
(every 3 minutes in comparison with every 15 minutes of ionosonde "Parus-A"). There are

no reference markings for the PCS4 FMCW ionosonde, but there are many ionograms, the

extracted parameters of which can be very useful for scientific research. To use ready-made

trained deep neural networks for recognition of ionograms of the PCS4 FMCW ionosonde,
it was necessary to convert the ionograms to a general form. Figure 2 shows an example of

a  PCS4  FMCW ionosonde  ionogram,  and  Figure  3  shows  a  transformed  view  of  the
ionogram, which can already be used by deep neural networks to recognize reflection traces

from different layers of the ionosphere. The deep neural networks described in section 2
have been successfully applied to recognize ionograms of PCS4 FMCW ionosonde. Figure

4  shows  the  result  of  the  work  of  the  ionogram  analysis  support  system  [2],  which
highlighted the reflection trace from the F2 layer of the ionosphere in the example under

consideration. Figure 5 shows the ionogram from the "Parus-A" ionosonde, marked by the
operator and using deep neural networks, which was obtained at 15.07.2020 13:00 UTC.

Fig. 1. The PCS4 FMCW ionosonde and its antenna.

Fig. 2. An example of an ionogram obtained with the PCS4 FMCW ionosonde at night (15.07.2020

12:58 UTC).

Fig. 3. The transformed view of the ionogram, which can already be used at the recognition stage.
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Fig. 4. Highligting of the reflection trace from the F2 layer of the ionosphere in the ionogram from
the PCS4 FMCW ionosonde.

Fig. 5. Highligting of the reflection trace from the F2 layer of the ionosphere in the ionogram from

the "Parus-A" ionosonde.

Figure 6 shows the marked ionogram obtained from the PCS4 FMCW ionosonde in the
daytime  (15.07.2020  00:04  UTC).  Figure  7  shows  the  ionogram  from  the  "Parus-A"

ionosonde, marked by the operator and using deep neural networks, which was obtained  at
15.07.2020 00:00 UTC.

Fig. 6. Highligting of the reflection trace from the E layer of the ionosphere in the ionogram from the

PCS4 FMCW ionosonde.

Fig. 7. Highligting of the reflection trace from the E layer of the ionosphere in the ionogram from the

"Parus-A" ionosonde.

4 Conclusion

Based on the results obtained in the work, the following conclusions can be drawn:
1. An increase in the number of used stations and training examples leads to an increase in

the accuracy of recognition of the layers of the ionosphere. So, the recognition accuracy of
the F2 layer was improved by ~ 1.0478 times, the recognition accuracy of the F1 layer was
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4 Conclusion

Based on the results obtained in the work, the following conclusions can be drawn:
1. An increase in the number of used stations and training examples leads to an increase in

the accuracy of recognition of the layers of the ionosphere. So, the recognition accuracy of
the F2 layer was improved by ~ 1.0478 times, the recognition accuracy of the F1 layer was

improved by ~ 1.088 times,  the  recognition  accuracy  of  the E layer  was improved by

~1.343 times. The results  are compared when using data from two ionospheric stations
(Paratunka and Moscow) with data from only one Paratunka station.

2. A strategy of sequential recognition of ionospheric layers is proposed. First, the F2 layer
is recognized and it is removed from the image, then the E layer is recognized and it is

removed from the image,  and finally  the F1 layer  is  recognized.  Thus,  the recognition
accuracy of the F1 layer was improved by ~ 1.12 times.

3. Trained deep neural networks can be used to recognize ionograms from a different type
of ionosonde.

4. Since the noise level in different ionosondes is different, it is important to: remove noise
from ionograms and train deep neural networks with the addition of artificial noise.

5. Since there were no reference markings for the PCS4 FMCW ionosonde and it is close to
the "Parus-A" ionosonde, the quality of recognition of ionograms should be further checked

with expert operators on the basis of the reference markings of the "Parus-A" ionosonde.
6.  Since  the  starting  frequency  of  sounding  is  different  for  different  ionosonde,  it  is

recommended to train deep neural networks for a specific ionosonde.
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