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Abstract. The EN ISO 52016-1:2018 technical standard has introduced a 

new simplified dynamic method for the calculation of the building energy 

need for heating and cooling. This new procedure combines a low amount 

of input data required, as for the previous quasi-steady and dynamic 

simplified methods of the withdrawn EN ISO 13790 standard, with an 

increased accuracy, which would reduce the gap with detailed dynamic 

methods. This work is part of a broader research activity aimed at 

investigating the new simplified dynamic model and highlighting its 

strengths and weaknesses, in terms of accuracy and robustness. Specifically, 

the work addresses the parameters that have a great influence on the final 

results and the effects of uncertainties in input data. To this purpose both 

standard and tailored energy performance assessments have been applied, in 

particular in the first one a continuous operation period of the space heating 

system was supposed, and in the second one an intermittent operation system 

was chosen. A sensitivity analysis was also carried out to quantify the 

variation of the heating and cooling loads with the set-point temperature, the 

windows physical properties, the heat capacity and the thermal transmission 

properties of opaque components, as well as the occupancy related input 

parameters, such as the internal heat gains and the ventilation flow rate. The 

analysis was applied to a multi-unit residential building located in Rome and 

built in the first half of the 20th century. The results outline absolute 

relevance of the set point temperatures. The significance of occupant 

behaviour and the importance of the correct definition of the component 

thermal properties is also pointed out through the comparison between the 

standard and tailored assessments. 

1 Introduction  

In 2018, the new EN ISO 52016-1 standard [1] was published. It presents new models for the 

calculation of the energy performance of buildings, replacing those presented ten years earlier 

in EN ISO 13790 [2]. The purpose of the previous standard was to present a procedure 

capable of combining a moderate complexity and precision of the input data with a good 

ability to predict the real behaviour of the building. In the new standard, besides a quasi-
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steady-state calculation model, which is not much different from the EN ISO 13790 one, a 

simplified dynamic calculation model was presented. The focus will be on the latter, which 

presents several differences compared to the model provided by EN ISO 13790, specifically 

referred to a different modelling of the building thermal inertia. Although there is a growing 

body of literature that compares different methods for the buildings energy performance 

calculation, the use of new EN ISO 52016-1 hourly method has not been sufficiently 

investigated yet. The majority of these comparative studies analyse in-depth the conditions 

and purposes for which a simplified calculation model can estimate the energy performance 

of the building with a sufficient level of accuracy when compared with a detailed numerical 

simulation model.  

 Several studies conducted on the monthly quasi-steady method of EN ISO 13790, such 

as the work of Ballarini et al. [3], showed that this method typically overestimates the thermal 

losses, compared with dynamic models, and presents several limitations to assess the thermal 

energy need in intermediate periods (i.e. spring and autumn). This type of error was also 

discussed by Jokislao and Kurnitski [4] for the calculation of the monthly utilization factor 

of the heat gains, showing strong deviations between night and day heat demand compared 

to a dynamic simulation model, especially for light-weighted building structure. Besides, 

other studies pointed out that the mismatch between models can also be originated by the 

different ways used to define the thermal losses of the building envelope, thus the importance 

of a correct evaluation of the heat transfer coefficient, underlined by Corrado and Fabrizio 

[5], and the issue of using the indoor operative temperature or the indoor air temperature, as 

in the study of Gasparella and Pernigotto [6]. Many authors highlighted the noticeable 

deviation between the calculation models; in particular Kokogiannakis et al. [7] pointed out 

the large differences that occur for heating intermittent cases. For this reason, several works 

such as Corrado et al. [8] and Beccali et al. [9], suggested that a dynamic simplified method 

would be preferable to a quasi-steady one.  

The EN ISO 13790 simplified dynamic method was also analysed in-depth in many 

research works which showed that, although it is based on a much smaller number of input 

data compared to a detailed dynamic calculation method, the simplified hourly method lead 

to results closer to a dynamic simulation model than to a stationary method [10]. Atmaca et 

al. [11] investigated the deviations that exist between the simplified hourly method and a 

detailed dynamic simulation (EnergyPlus) in determining the heating energy needs, by 

varying the thermal mass of the building. The analysis, developed for an apartment with five 

different types of external walls, confirmed that the simplified hourly method can be reliable 

in modelling the thermal capacity of the buildings that are not very complex. The general 

reliability of the hourly model of the EN ISO 13790 standard was also confirmed in a study 

conducted by Costantino et al. [12] by estimating the heating and cooling thermal needs of a 

building for zootechnical shelter. The results, compared with the ones from a detailed 

dynamic simulation, showed slight deviations due to the different assessment of the thermal 

capacity in the two calculation methods. 

Up to now, few studies have investigated the new EN ISO 52016-1 standard method 

accuracy. Preliminary results were achieved by Ballarini et al. [13], by comparing the new 

hourly method with the old EN ISO 13790 model and a detailed dynamic simulation model 

(EnergyPlus). The analysis was aimed at understanding whether the new hourly model could 

represent a good compromise between the easiness of application – typical of a simplified 

calculation method – and the accuracy of the results – characteristic of a detailed dynamic 

calculation. Considering the limitation due to the case study presented, i.e. a standard plan of 

a single-family house, the results showed that the hourly method of EN ISO 52016-1, with 

appropriately detailed input data, provides results closer to the outputs of the detailed 

dynamic simulation in comparison to the hourly method of EN ISO 13790, especially 

concerning heating and cooling thermal loads. Although both simplified methods 
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demonstrated to provide a valid estimation of the building's thermal needs, there are 

significant deviations between the thermal time constants obtained by applying the various 

calculation methods. Furthermore, the new standard was compared with the TRNSYS model 

for six BESTEST cases by Siva Kamaraj [14], for lightweight and heavyweight classes of 

construction with free-floating, continuous, and intermittent HVAC system control 

strategies. As the simulations were run for a wide range of buildings and different weather 

files, including Milan (Italy), Palermo (Italy), Denver (USA), and Colorado (USA), results 

showed a range of deviation between 10% and 30% in the heating needs, and between 25% 

and 40% in cooling needs. 

Due to the deficiency of the analysis currently done on the EN ISO 52016-1 simplified 

dynamic calculation method, it is recommended to evaluate the accuracy, robustness, 

flexibility, transparency, and reproducibility of the model. The present paper represents a 

first step in the process of EN ISO 52016-1 validation, aimed at the definition of the different 

weights that input parameters have in the calculation of the energy performance of buildings. 

This study was carried out by analysing the sensitivity of energy needs and the loads for the 

heating and cooling season to different input parameters, such as the set-point temperature, 

the window physical properties, the thermal capacity of the opaque building components, etc. 

A residential building located in Rome, Italy, was selected as a case study, and both standard 

and tailored energy performance assessments were applied. The main features of the 

simplified dynamic calculation of EN ISO 52016, the boundary conditions, and the other 

assumptions were studied in detail, as to reach a holistic analysis. 

2 Methodology 

As introduced, a case-study approach was used to facilitate the achievement of the research 

goals. The methodology applied is based on a sensitivity analysis on the thermal behaviour 

of the case-study aimed at evaluating at what extent different input parameters influence the 

output results. In the following paragraphs, the calculation model, the sensitivity analysis 

methodology, the case study and the modelling assumptions and simplifications are described 

in detail. 

2.1 Description of the calculation model (EN ISO 52016-1) 

The simplified dynamic calculation model of the EN ISO 52016-1 standard is applicable to 

evaluate on an hourly basis the sensible thermal load for space heating and cooling, the latent 

load for the (de-)humidification, the internal temperature (operative, air and / or mean radiant 

temperature), the sensible energy need for space heating and cooling, the latent energy need 

for (de-)humidification, the sensitive and latent design heat load for space heating and cooling 

and the conditions of the supply air to guarantee any humidification and / or 

dehumidification. 

The calculations are performed separately for the different thermal zones, which can be 

either coupled or not. 

The simplified method is based on the hourly resolution of the air energy balance, 

accordingly to the assumptions reported in the EN ISO 15217-1 technical standard [15], e.g. 

the uniformity of the air temperature the thermal zone (or room), the one-dimensional thermal 

conduction through the building components (excluding the ground). In addition, some 

simplifying hypotheses are added in EN ISO 52016-1: 

• the thermal zone is assumed as a closed space delimited by building envelope 

components; 
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• the thermo-physical properties of the materials that make up the building 

envelope components are time-independent. Nevertheless, properties based on 

components activation are not excluded; 

• the external radiant environment (excluding the sky) is at the same temperature 

as the external air; 

• the spatial distribution of solar radiation inside the room is uniform and time-

independent; 

• the distribution of mass in each construction component is simplified (5 different 

mass distribution classes are presented in the standard); 

• the solar properties of the windows do not depend on the angle of incidence of 

solar radiation; 

• the total solar energy transmittance is assumed to be direct transmittance into the 

zone; 

• the mean radiant temperature is calculated as the weighted average over the area 

of the internal surface of each component. 

 

As for the thermal energy balance of the zone(s), the method reported in the standard is a 

review of the three-node method (5RC1), already present in EN ISO 13790 [2]. The main 

difference is that the construction elements are not aggregated to the concentrated parameters 

zone, instead they are considered separately. In this regard Fig. 1, represents the model with 

concentrated parameters of a generic component of the envelope. 

 

 
Fig. 1. Illustration of the equivalent “RC” model for a building opaque element. 

2.2 Sensitivity analysis 

The sensitivity analysis is based on a preliminary phase, in which the most influencing input 

parameters are identified. In particular, the analysis consists in the variation of these 

parameters and in the numerical evaluation of their influence on the energy need and thermal 

loads for space heating and cooling, applying both the standard and the tailored ratings. 

The most influencing parameters identified and subject to the sensitivity analysis are the 

occupancy density, the mass distribution in the external walls, the indoor operative 

temperature set-points during the occupied hours (both in the heating and in the cooling 

seasons) and the solar transmittance of windows. 
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2.2.1 Mass distribution 

Although most of the chosen input parameters can be easily numerically measured, and 

therefore a clear application in the sensitivity analysis procedure is possible, the measure of 

the mass distribution variation needs to be developed. On this matter, a specific parameter, 

namely the structure deviation, aimed to describe how the mass distribution differs from the 

actual component, was created. 

In this regard, both the actual structure and the 5 different mass distribution classes are 

described in x-y chart,  in which the x- and the y-axis represent respectively the structure 

thermal resistance and areal heat capacity (an example is presented in Fig. 2); the latter is 

described as a function of the first one through the thermal effusivity, as described in the 

following equations: 

dk = ·c·ds=e2·dR (1) 

dR=ds/ (2) 

e=( ·c·)1/2 (3) 

Where k is the areal heat capacity from the external surface to a given depth (kJ·m-2·K-1), 

R is the thermal resistance from the external surface to a given depth (m2·K·W-1),  is the 

mass density (kg·m-3), c is the specific thermal capacity (J·kg-1·K-1), s is the depth from the 

external surface (m),  is the thermal conductivity (W·m-1·K-1), and e is the thermal effusivity  

(J·s-1/2·m-2·K-1). 

 

Fig. 2. R-k graph for the external wall actual structure and the EN ISO 52016-1 class D (equally 

distributed) model. 

The parameter (τdev) describing the mass deviation between the actual wall and its model 

(represented in green in Fig. 2) is described as follows: 

 

𝜏𝑑𝑒𝑣 = ∫ 𝑒2|𝑅 − 𝑅𝑚𝑜𝑑|
𝑅

0

𝑑𝑅 
(4) 

 

This procedure is reiterated for the five models presented in EN ISO 52016-1. 
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2.2.2 Sensitivity indexes 

The variations of the input parameter are then implemented one at a time in the case study 

energy models, and their influences on the heating and cooling energy needs and thermal 

loads are evaluated by means of a sensitivity index (s) calculated as follows: 

 

𝑠 =
RMSEO/𝑂𝑟𝑎𝑛𝑔𝑒

RMSEI/𝐼𝑟𝑎𝑛𝑔𝑒
 (5) 

𝑅𝑀𝑆𝐸𝑂 = √
Σi(𝑂𝑖 − 𝑂0)

2

𝑛  
(6) 

𝑅𝑀𝑆𝐸𝐼 = √
Σi(𝐼𝑖 − 𝐼0)

2

𝑛  
(7) 

𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑂𝑚𝑎𝑥 − 𝑂𝑚𝑖𝑛
 

(8) 

𝐼𝑟𝑎𝑛𝑔𝑒 = 𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
 

(9) 

 

where RMSEO and RMSEI represent the root mean squared error (RMSE) of the output 

and the input, respectively, as defined in Equations 6 and 7, Orange is the output range, as 

defined in Equation 8, Irange is the input range, as defined in Equation 9, the subscript i and o 

represent respectively the calculated and the base input and output values, n is the number of 

the cases considered. Imin and Imax are respectively the minimum and the maximum input 

values; Omin and Omax are the minimum and the maximum output values, respectively. 

2.3 Case study 

The analysed case study is a residential multi-apartment building located in Rome (Italy, 

climatic zone D), characterized by a trapezoidal shape (Fig. 3). The building is sited in an 

urban environment characterized by buildings of equal or lower heights then the case study, 

which is therefore not particularly shaded by the surrounding buildings. 

 

 

Fig. 3. Building picture and floor plans 

 

The analysed building consists of 7 stories above ground and a basement story, for a 

conditioned net floor area of 1091 m2. The ground floor, not subject to the present analysis, 

includes commercial spaces and a condominium room; the other stories above ground are 
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instead characterized by 3 apartments each and common stairwell spaces. Moreover, the 

building is adjacent to another residential building on the South-West façade. 

The building was built in 1926 and is characterized by a load-bearing brick and stone wall 

structure and a mainly uninsulated building envelope. The envelope component thermal 

properties were evaluated on the basis of the available data provided by an energy audit 

technical report. The external walls of the intermediate stories are characterized by 70 cm 

thickness and are made of two rows of solid bricks separated by a layer of pebbles and 

crushed stones. The external walls of the 6th and 7th floors are instead thinner (33 cm) and are 

characterized by two rows of half-filled bricks separated by an unventilated air gap. The 

thermal transmittances of the walls of the intermediate stories and of the 6th and 7th stories 

are 0.90 W·m-2K-1 and 1.14 W·m-2K-1, respectively. 

As for the horizontal opaque components, the floor separating the ground to the first floor 

is a hollow brick and concrete slab and it is characterized by a thermal transmittance equal to 

1.66 W·m-2K-1; the U-value of the flat roof is instead equal to 1.66 W·m-2K-1. 

The transparent envelope is characterized by single glazing with metal frame windows at 

the intermediated stories and by double-glazing with wooden frame windows at the 6th and 

7th stories. The thermal transmittance of the windows ranges from 6 to 3 W·m-2K-1.  

The apartments are supplied by a centralized heating system, while the stairwell is not 

heated. The heat emitters are radiators located on the external walls, and the distribution 

system is characterized by uninsulated pipes running on the internal side of the external walls. 

No control systems are installed. 

2.4 Calculation assumptions and boundary conditions for simulations 

The climatic data used for the energy performance evaluations refer to the typical climatic 

year on an hourly basis, elaborated by the Italian Thermo-technical Committee (CTI). 

The building has been divided into the following thermal zones: 

• thermal zone 1: 2nd floor; 

• thermal zone 2: from the 3rd to the 5th floor; 

• thermal zone 3: from the 6th to the 7th floor. 

 

Table 1. Summary table of user data. 

Parameter Value 

Number of people per floor 7 

Total heat power released by a person in [W] 118 

Convective heat power released by a person in [W] 41 

Radiative heat power released by a person in [W] 39 

Latent heat power released by a person in [W] 38 

Moisture produced by a person in [g·h-1] 54.7 

Mean lighting and appliance heat gains [W·m-2] 3.01 

Mean appliance moisture production in [g·h-1·m-2] 0.54 

Supply air flow rates [m-3 ·h-1 ·m-2] 0.2 

Top in occupied hours for heating [°C] 20 

Top in occupied hours for cooling [°C] 26 

Minimum Top in unoccupied hours [°C] 16 

Maximum Top in unoccupied hours [°C] 32 
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The ground floor (not subject to analysis) and adjacent buildings were assumed to be 

conditioned at constant temperature. The user behaviour data were mainly obtained from UNI 

EN 16798-1:2019 [16] standard National Appendix draft. Table 1 shows user data assumed 

in the calculation.  

As far as the sensitivity analysis is concerned, the results of the applied procedure to 

calculate the structure deviation parameter (τdev) for the 5 mass distribution classes are 

presented in Table 2. All the chosen input parameters, their base value and the defined 

variations are instead presented in Table 3. 

 

Table 2. τdev calculation results. 

Class Description Value [s] 

Class I Mass concentrated at internal side 485 

Class E Mass concentrated at external side 487 

Class IE Mass divided over internal and external side 248 

Class D Mass equally distributed 77 

Class M Mass concentrated inside 240 

 

Table 3. Parameters of sensitivity analysis. 

Parameter Symbol Base value Variation 

Occupant density od As defined in Table 1 ±10%; ±20% 

Mass distribution of external walls [s] τdev 77 240; 248; 485; 487 

Top in occupied hours for heating [°C] Tset,H 20 ± 1; ± 2 

Top in occupied hours for cooling [°C] Tset,C 26 ± 1; ± 2 

Solar transmittance ggl 0.750 0.670; 0.850 

3 Results 

The results of the sensitivity analysis are presented in Figs. 4 and 5, in terms of sensitivity 

index obtained for the energy needs for heating and cooling for both the standard and the 

tailored ratings. Fig. 4 highlights the operative temperature set-point as the main parameter 

that most influences the output results for the heating season. In fact, the sensitivity index for 

the heating set-point temperature results to be 591% and 1136% higher than the other 

parameters for the tailored and standard rating respectively.  In Fig. 5, which shows the 

results for the cooling season, all the parameters present almost the same relevance, with a 

slight predominance of the temperature set-point. 

The case study, thanks to a quite massive envelope, has a very good response to 

temperature fluctuations. Evidence of this result can be found in the small variation that 

heating and cooling energy needs present in standard and tailored rating simulations; due to 

this latter, the sensitivity results for the two ratings have the same trend for the heating period, 

and almost the same results for the cooling one.  
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Fig. 4. Sensitivity index for energy needs for heating. 

 

Fig. 5. Sensitivity index for energy needs for cooling. 

 

The sensitivity analysis results for the heating and cooling loads are presented 

respectively in Figs. 6 and 7.  

Generally, the heating and cooling loads result to be much more influenced by the input 

parameters variations compared to the heating and cooling needs results.  

Regarding the heating period, most influencing parameters are the set-point temperature 

and the occupant density respectively for the standard and the tailored rating. Instead, the 

results for the cooling season show the same trend for both the standard and the tailored 

rating, with a light predominance of the occupant density, followed by the set point 
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temperature. The other two parameters, as for the heating season, results to be of minor 

importance. 

As regards the building envelope mass distribution, this has a different influence over the 

heating and cooling loads compared to the energy needs. In fact, differences between the two 

ratings can be highlighted, especially for the heating period. However, the mass distribution 

variation results to be the less influencing parameter for both the standard and tailored ratings. 

 

 

 

Fig. 6. Sensitivity index for heating loads. 

 

 

Fig. 7. Sensitivity index for cooling loads. 
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4 Conclusions 

A one-at-a-time sensitivity analysis was performed over the EN ISO 52016-1 simplified 

dynamic calculation model in order to analyse the influence of the solar transmittance of 

windows, the indoor operative temperature set-points, the model of mass distribution in 

building components and the occupancy density over the heating and cooling needs and 

loads. This preliminary analysis pays the way to develop a wider research activity aimed at 

validating the EN ISO 52016-1 dynamic method, as to increase its accuracy for the estimation 

of the building thermal behaviour. 

The results of the analysis showed the absolute importance of operative temperature set-

point as the main influencing parameter, among those concerned in the sensitivity analysis, 

for both the energy needs. Moreover, a strong relevance of the other three parameters, and 

the occupancy density first, has been highlighted in the cooling period. On the other hand, as 

regards the heating and cooling loads the main influencing input parameters turn out to be 

the occupant density and again the set-point temperature. 

These results underline that the correct definition of set-point temperatures is the main 

way to modify and correct an excessive energy consumption. Regarding the loads, while the 

occupant density is the most important, it is not directly defined in the building design 

process. For this reason, the other three parameters, which are directly determined by the 

building designer and have the same order of magnitude, should be carefully defined in order 

to correctly size the heating and cooling system. 

The analysis over the distribution of the mass in the construction, shows that the way the 

mass model describes the distribution of thermal properties inside the component, does not 

lead to particularly significant variation of the outputs. This can be traced back to either a 

problem in the EN ISO 52016-1 model, too simplified to fully describe the phenomenon, or 

to the case-study characteristics, which flatten the output results differences. 

Further works will be focused on the analysis of other building typologies with different 

building envelope features, and occupancy as well, in order to obtain a wider sensitivity 

database, independent on the peculiarity of the single case study.  Moreover, a deepening in 

the knowledge over the input parameters will be performed through uncertainty analysis in 

order also to fully understand how errors in the input definition may alter the results. It will 

also be of interest to analyse the way the EN ISO 52016-1 calculation methodology examines 

the different physical phenomenon that play a role in energy balance equation, deepening the 

way the chosen simplification and the calculation process leads to discrepancies from detailed 

dynamic simulation models. 

 
This work was based on a research supported by the Italian National Agency for New Technologies, 

Energy and Sustainable Economic Development (ENEA), regarding the theoretical study of the 

simplified hourly calculation model and the application to residential housing. 
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