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Abstract. Solving the problem of improving efficiency of technological 
processes of mineral concentration is one of the essential for providing 
sustainability of mining enterprises. Currently, special attention is paid to 
optimization of technological processes in concentration of useful 
minerals. This approach calls for availability of high-quality data on the 
process, formation of corresponding databases and their subsequent 
processing to build adequate and efficient mathematical models of 
processes and systems. In order to improve quality of mathematical 
description of forming fractional characteristics of ore through applying 
technological aggregates in concentration, the authors suggest using 
power Volterra series that provide characteristics of a controlled object 
(its condition) as a sequence of multidimensional weight functions 
invariant to the type of an input signal – Volterra nuclei. Application of 
Volterra structures enables decreasing the modelling error to 0.039 under 
the root-mean-square error of 0.0594. 

1 Introduction 
Metallurgy is one of the most essential Ukrainian industries. Analysis of current conditions 
and trends of Ukraine’s mining and metallurgical industry reveals considerable problems 
caused by severe competitiveness and gradual deterioration of quality of processed ores. 
Methods and algorithms of controlling technological processes in mineral concentration are 
unable to reduce power consumption, improve quality and productivity, minimize losses, 
etc. Therefore, leading mining countries assume that creation of new highly efficient 
methods and algorithms of automated control over technological processes in ore 
concentration through improving data support and control methods, particularly in 
characteristics of technological flows of a concentration plant is a priority. 

The issue of automated control over multifactor energy-intensive technological 
processes when there are variations of processed raw material characteristics caused by 
managerial-technical and random factors is one of the most complicated tasks calling for 
application of specific methods. Formation of optimal control over concentration processes 
as interrelated space-distributed blocks is one of such processes. 
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As in case of systems with concentrated parameters, basic forms to describe distributed 
objects include presenting them by differential equations in partial derivatives, transmission 
functions, time characteristics, and frequency characteristics [1 – 4]. 

In [4 – 6] there are two approaches to forming a time-space model of the distributed 
system. The former approach implies determining the system’s reaction to the input signal 
presented as a combination of delta functions in space and time domains [7, 8]: 

( ) ( ) ( )1 1 0 0, ,ω x t δ x ρ δ t τ= - -    (1) 

where 1 1,x D∈ 0 2Dρ ∈ ; 1x , 0ρ  are assigned space points D1, D2; t, τ are time independent 
variables. 

The object’s reaction to the input impact ω(x, t) is presented as the Grin function  
G(x, t, ρ, τ) or an impulse transitional function. The latter approach involves determining 
the object’s reactions to its own vector-functions of the object operator. Under such 
circumstances, the distributed object is an infinite totality of independent conventionally 
concentrated contours, transitional functions of each of them are presented as a ratio of 
analytical integral functions.  

[9 – 11] analyzes peculiarities of basic forms of describing distributed objects. It is 
indicated that distributed systems are noted for space-related components in input and 
output signals. That is why, in distributed systems, time-related inputs should be 
complimented with their spacious form. In case of a linear distributed object, dependency 
of the output function Q(x, t) on the input impact ω(ρ, τ) can be presented as follows: 

( ) ( ) ( )
0 1

, , , , , ,
t

t D
Q x t G x t ρ τ ω ρ τ dρdτ= ò ò    (2) 

where ( ), ,G x  t  , ρ τ  is an impulse transitional function (the Grin function). The integral 
ratio for the output function is determined in compliance with the following expression: 

( ) ( ) ( ), , , , , ,Q x t G x t ρ τ ω ρ τ= Ä          (3) 

where Ä  is an operator to integrate two functions related to this symbol by the parameters 
1Dρ ∈  and τ. The time distributed block is described by the following ratio in Laplace 

transform terms: 
( ) ( ) ( )

1

, , , ,
D

Q x s W x ρ s ω ρ s dρ= ò ,         (4) 

where ( ),Q x s , ( ),ω ρ s  is Laplace transform of the functions ( ),Q x t  and ( ),ω ξ τ  
respectively. 

Transition to mathematical modeling of distributed systems by using neural networks is 
considered in [11, 12]. The authors think that this approach is applicable if the function 
describing the controlled object is characterized by the following properties. It is a 
composition of simple elements; its structure is defined by selecting parameters from the 
finite set and selection procedures are resistant to disturbances of initial data and calculating 
errors. It is indicated that analytical solution provides for a small number of problems, 
while current approximating methods of solution either allow obtaining only pointwise 
approximation similar to network methods or advance specific demands to selecting 
approximation functions. The advantage of the neural-network approach is the opportunity 
to obtain a solution in the form of a function, thus meeting the requirements of smoothness. 
The most important advantage of neural-network model is its resistance to data errors – 
inaccuracies in setting equation coefficients, boundary and initial conditions, disturbances 
of the boundary, calculating errors, etc.  
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[12, 13] suggest applying neural networks to solving differential equations with partial 
derivatives. Also, [10, 13, 14] investigates into the neural-network variant of the spline-
collocation method for numerical solution of nonlinear equations of mathematical physics. 
At the same time, it is indicated in [15, 16] that there are some disadvantages in combining 
neural-network approximation of solutions of the boundary value problem with the 
collocation method under invariable basic functions. 

To increase efficiency of methods of identifying nonlinear dynamic systems, [2, 5, 17] 
suggests Volterra models. At the same time, the robust method for identifying nonlinear 
dynamic systems based on Volterra models in the time domain has been developed. It 
provides for solving integral first-kind Volterra equations through applying the method of 
standardizing incorrect problems developed by A.M. Tikhonov that enables increased 
accuracy of identification [18]. 

Thus, considering spacious distribution of the technological line in concentration as a 
controlled object, among available approaches to modelling, the most promising ones 
include those providing formation of a model as a system with distributed parameters. 

The suggested model of the control system is based on presenting a technological 
concentration line as a structure with concentrated input impacts and an output distributed 
along the entire technological line – the function of distributing the Fe content in size 
classes of ore particles. A set of ultrasonic and radiometric measurements enables efficient 
assessment of distributing the useful component in distinguished iron ore classes [6, 8, 14]. 

2 The mathematical model and the mechanism of applying 
Volterra nuclei  
The problem of identifying the second-kind Volterra model can be solved by forming 
equations to assess model parameters envisaging the minimal root-mean-square error of 
forecasting and simultaneously admitting that the input sequence ( ){ }kψ  is stationary [19, 
20]. The advantage of this approach implies appearance of simple equations assessment 
with certain correlations that can be assessed by available data.  

Equations assessing parameters are synthesized by using the expression of the mean-
square forecasting error: 

( ) ( ) ( ) ( ) ( ) ( )
2

0 1 2
0 0 0

, .
M M Md d

i i j
MSE E β k β α i ψ k i α i j ψ k i ψ k j

= = =

ì üï ïæ öï ï÷çï ï÷ç= - - - - - -å å åí ý÷ç ÷ï ï÷çè øï ïï ïî þ

   (5) 

Through differentiating equation (1) according to the constant parameter 0
dβ , we obtain 

the following ratio between this parameter and the second-order model coefficients 2 ( , )a i j  
[20, 21]: 

0 2
0 0

( , ) ( )
M M

ψψ
i j

β y a i j R i j
= =

= - -å å .     (6) 

Similarly, by differentiating equation (5) according to the mean-square parameter 
),(2 qpa , we obtain a system of linear equations: 

{ }2 0
0 0

( , ) ( )( ) ( ) ( ) ( , ) ( ).
M M

ψβ ψψ
i j

a i j E ψ k i k j ψ k p ψ k q t p q β R p q
= =

- - - - = - -å å    (7) 

Substituting equations (6) into (7) involves a fixed term y0 that under p, q = 0,1,…,M 
results into the following system of nonlinear equations for 2 ( , )a i j  [20, 22]: 
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2
0 0

( , , , ) ( , ) ( , ),
M M

w
j

D i j p q a i j t p qψ
α =

=          (8) 

where ( , )wt p qψ  is a reciprocal bicorrelation between the initial sequence { }ψ  and the 

initial deviation ( ) ( ) ; ( , , , )w k k D i j p qβ β= −  determined by the formula: 

( ) ( ) ( ) ( ) ( ){ } ( ), , , .D i j p q E k i k j k p k q R p qψψψ ψ ψ ψ= − − − − − −   (9) 

In equation (8), the parameter D can be expressed in a simpler way in case of the known 
distribution of the input sequence. In case of the Gaussian distribution considered in [23], D  
is set by the formula: 

( , , , ) ( ) ( ) ( ) ( )D i j p q R i p R j q R i q R j pψψ ψψ ψψ ψψ= − − + − − .       (10) 

Considering that 2 2( , ) ( , )a i j a j i=  and ( , ) ( , )w wt p q t q pψ ψ= , equation (8) is written as: 

2
0 0

2 ( ) ( ) ( , ) ( , )
M M

w
i j

R i p R j q a i j t p qψψ ψψ ψ
= =

− − =  .  (11) 

According to the definition of the matrix multiplication operation, the equation can be 
rewritten in the following way: 

2 ,wR BR Tψψ ψψ ψ=     (12) 

where B is the matrix of ( 1) ( 1)M M× +  the i, j elements of which are ( , )wt i jψ . 
Considering that the input autocorrelation matrix Rѱѱ is reciprocal, equation (8) has the 
following analytical solution for the problem of identifying the second-order Volterra 
model: 

11

2
1 −−= ψψψψψ RTRB w .        (13) 

Identification of the third-order Volterra model is more complicated and, as a result, it is 
used less often in practice [24, 25]. As in case of the second-order model, to identify third-
order models, there are used results of factorizing the higher-order moments to synthesize 
equations and determine model parameters on the basis of reciprocal three-correlation of 
input and output signals. The structure of these results is more complicated than for the 
second-order model as conditions for solving the second-order problem do not solve the 
third-order equation to the full extend. It should be noted that the symmetric component of 
the system response does not result from the linear part of the Volterra model only, it 
including parameters of the third-order model as well. 

The above issues are studied in [14, 26] in detail. Simplification of identification is 
performed by reducing the input sequence to the zero average. Yet, [21] does not envisage 
symmetrical distribution of the input sequence and, therefore, moments of odd orders are 
nonzero. Similarly to the way of the second-order solution including the fourth moments up 
to excess, the third-order solution includes sixth moments. [23] suggests the expression for 
mathematical expectation in a general form { }1( )... ( )nEx k x k  when n = 2, 3, 4, 5 and 6. For 
instance, when n = 6, we have: 
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{ }

6 1 6
4 2 1 2 3 4 5 6
2

1 3 1 2 3 4 5 6
3 1 2 3 4 5 62

...

( )... ( ) ...

0

n

k k
k k k k k k

Ex k x k k k k k k k
k k k k k k
otherwise

μ
μ μ

μ

μ

 = =
  = < = = =  = = = < = = 
  = < = < = 
 

.      (14) 

Considering these results, as in case of the second order, one can obtain clear solutions 
of the assessment problem by the least-square method that leads finally to comparatively 
accurate results of the Volterra model parameters. The simplest of these equations is the 
one for 3 1 2 3( , , )a i i i  when 1 2 3i i i< < : 

{ }1 2 3
3 1 2 3 3

2

( ) ( ) ( ) ( )
ˆ ( , , )

E k k i k i k i
a i i i

β ψ ψ ψ
μ

− − −
= .  (15) 

The equation for assessing other model parameters are closely connected with other 
assessments of parameters and therefore they should be solved in a certain sequence. 
Nondiagonal assessments of quadratic parameters 2 1 2ˆ ( , )a i i  for 1 2i i<  are set by the 
expression: 

[ ]2 1
2 1 2 2 2 3 3 1 1 2 3 1 2 2ˆ ˆ ˆ( , ) ( , , ) ( , , )a i i a i i i a i i iμ α μ μ− −= − + .  (16) 

Diagonal parameters 2 1 2( , )a i i  and 3 1 2 3( , , )a i i i  should be calculated only after 
determining all nondiagonal parameters of the second and third order. Linear parameters 
should be calculated last of all as formulae for their calculations include diagonal 
parameters. 

3 Results and discussion 
To investigate into efficiency of the developed model, a hybrid Hammerstein model has 
been used as a basic one, it consisting of two elements – the stationary nonlinear block 
(“ψ – v” channel) described by the fuzzy model and the linear dynamic block (“v – β” 
channel). According to this structure, at the output of the stationary nonlinear block based 
on the fuzzy knowledgebase, we obtain data not on input variables ( )kdβ , but transformed 
input ones ( )v k . The output of the fuzzy model is calculated as the weight-average number 
of fuzzy rule consequences: 

( )
( )

1
11 1

1
11

,...,1 1 , ...

,...,1 1

n
nn n

n
nn

MM
i ii i h i i

h MM
i ii i

d
v

ϑ ψ

ϑ ψ
= =

= =

⋅⋅⋅ 
=

⋅⋅⋅ 
,   (17) 

where Mj is the number of fuzzy sets in the j-th input domain; the execution rate is 

( ) ( )1,..., ,...,
1

.
u

n j

n
i i j i j

j
A

ψ
ϑ ψ ψ

=
= ∏  

To approximate the dynamic block in this model, difference equations are used. The 
hybrid Hammerstein model - block-oriented model, which represents a non-linear system in 
the form of various combinations of inertial links and non-linear inertial mathematical 
elements – at the (k+1)-th step looks like [20, 26]: 
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( ) ( ) ( )( )1

1 1
1

... , ...
1 1 1 1

1 1 1
y u n

n n
n

n n MMd d
i i i i d h i i

i i i i
k A k i B k i n dβ β ϑ ψ

= = = =
+ = − + + − − +    ,     (18) 

where ( )1d k iβ − +  and ( )1dk i nψ − − +  are corresponding outputs and inputs at previous 
steps; nβ and nѱ are maximum delays for outputs and inputs; nd is a one-time discrete delay 
(transport); Ai and Bi are matrices of m× m and m× n respectively that characterize the 
linear dynamic block; dh, j is the parameter characterizing the nonlinear (fuzzy) block. 

Models of nonlinear dynamic objects in concentration are identified according to the 
above procedure on the basis of testing results of the technological concentration line. 

At the same time the following parameters are used: efficiency of ore mining; water 
consumption; yield of concentrate, industrial products and tailings; yield of control sizes; 
content of Fetot, Fem associated with magnetite (Fem), hematite (Fegem) and siderite (Fesid); 
power consumption of the technological line and basic technological aggregates. 

Fig. 1 shows changes of the error (MSE) during identification without noises in the 
output signal channel. The graphs of MSE changes in identifying under additive noises of 
various capacity in the output signal channel are presented in Figs. 2 and 3. The obtained 
graphs of errors of the basic model and the Volterra model are presented in Figs. 4 and 5. 

 

 
Fig. 1. The error (MSE) without noises at the 
object output. 

Fig. 2. The error (MSE) under noises at the 
object output σ = 0.1. 

  
Fig. 3. The error (MSE) under noises at the 
object output σ = 00.1. 

Fig. 4. Errors of the basic model. 

 
Fig. 5. Errors of the Volterra model. 
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Table 1 presents the modelling results. The hybrid Hammerstein model suggested in 
[25] is used as a basic one with the nonlinear block presented by the fuzzy model of the 
Takagi-Sugeno type and connected with the dynamic block based on autoregressive 
equations. 

Table 1. Analysis of ore concentration models. 

No. Model Mean error εm Dispersion D(ε) MSW σ(ε) 

1 Basic 0.0915 0.0132 0.1151 
2 Volterra 0.039 0.035 0.0594 

Thus, it makes sense to apply Volterra structures to improving quality of mathematical 
description while forming fractional characteristics of ore by technological aggregates of 
concentration, this enabling the modeling error to fall by a factor of 0.039 with the root-
mean-square deviation of 0.0594.  

4 Conclusions 
The proposed control system model is based on the representation of the ore-benefication 
process line as a structure with concentrated input influences and the output distributed over 
the entire production line – a function of the distribution of iron level over the particle size 
classes of ore particles. 

To form time-space models of nonlinear dynamic objects in concentration, it is 
reasonable to refer to them as operators transforming vectors of input variables into those of 
output parameters. 

Application of the Volterra model enables decreasing the modelling error up to 5.94%, 
which serves a confirmation for viability of the given approach to identify processes of iron 
ore concentration. Yet, there is necessity of a great number of coefficients required for its 
implementation. 

Application of the suggested method of identifying nonlinear dynamic objects in 
concentration on the basis of the time-space Volterra model will enhance quality of 
automated control over parameters of iron ore concentration under conditions of 
nonstationarity and changes of static and dynamic parameters of an object. 

The search for ways to eliminate considerable disadvantages of the Volterra model is 
planned to be the next stage of our further research. 

Numerical data are provided in the research report “Identification of nonlinear dynamic technological 
objects of concentration based on nucleus operators” (State registration No. 0116U001518). 
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