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Abstract. Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) are the most 
widely used navigation systems at present. Aiming at the limitations of a single system application, this paper 
uses kalman filter to fuse the pose information provided by GNSS and INS, respectively. GNSS has the 
characteristics of being easily affected by the environment but with high absolute positioning accuracy. INS 
has the characteristics of high sampling frequency and autonomous navigation, but the error accumulates with 
time. Combining the advantages of the two systems to achieve the purpose of obtaining higher-precision pose 
information. In addition, aiming at the problem that GNSS/INS integration cannot provide continuous, stable 
and reliable navigation solutions under the GNSS signal blocking environment, a smoothing post-processing 
algorithm for GNSS/INS integration is studied. Through experimental verification, this algorithm can 
effectively improve the pose accuracy under GNSS signal blocking environment. 

1 Introduction  
In order to meet the requirements of high-precision 
navigation and mobile mapping, multiple navigation 
systems integrated has become a popular development 
direction. Global Navigation Satellite System (GNSS) 
and Inertial Navigation Systems (INS) are the typical 
candidates for integrated navigation systems[1]. GNSS has 
high long-term absolute positioning accuracy. However, 
under harsh observation environments, such as densely 
built cities, GNSS signals are vulnerable to interference 
and occlusion. When the number of observation satellites 
is less than 4, the condition of GNSS positioning solution 
cannot be satisfied. At this point, GNSS can no longer 
provide users with accurate position and velocity 
information[2]. As an autonomous navigation system, INS 
is not affected by the external environment and has high 
positioning accuracy in the short term. And its sampling 
rate is generally higher than 100HZ. However, the errors 
of inertial components will accumulate. If INS works 
alone for a long time, it will make the position and attitude 
information unavailable[4]. By comparing the advantages 
and disadvantages of GNSS and INS, it is not difficult to 
find that they are highly complementary.  

GNSS/INS integrated navigation system has obvious 
advantages, and it has extremely broad application 
prospects both in the military field and surveying and 
mapping field. Therefore, so many researchers have done 
a lot of research on it. The three most common integration 
strategies are: loosely coupled, tightly coupled and deeply 
coupled. Deeply coupled is a integration at the hardware 
level. This technology can effectively solve the 
contradiction between performance and bandwidth setting 

in the traditional receiver tracking loop design. However, 
due to its complex combination structure and high cost, it 
has not been widely applied[4]. Tightly coupled uses the 
original observation of GNSS and INS navigation into the 
same filter. However, the data processing of tightly 
coupled is relatively complex. And due to the large 
amount of calculation and low navigation stability, it is 
difficult to realize in engineering[5]. Loosely coupled use 
the position and velocity output by GNSS to measurement 
update, and the output of the filter is used to correct the 
INS system error. This integration scheme is relatively 
easy to implement[6]. However, loosely coupled has a fatal 
flaw. When the number of observation satellites is less 
than 4, the GNSS module cannot output position and 
velocity information. At this point, the integration system 
degenerates into INS navigation system. Aiming at the 
serious influence of GPS signal blocking on GPS/INS 
integrated navigation system accuracy, HE designed a 
fuzzy strong tracking extended kalman filtering 
algorithm[7]. LI adds observation information to describe 
the motion characteristics of the carrier in vehicle 
navigation, and adds motion condition constraints of the 
carrier when GNSS signal blocking. This method can 
effectively reduce INS error accumulation[8]. Post-
processing is also a method to solve the positioning error 
accumulation of integration system caused by GNSS 
signal out-of-lock. MIAO presented the concrete 
realization form of RTS algorithm and experimentally 
verified the performance of the smoothing algorithm[9]. 
Liu focused on the backward filtering model in the 
smoothing algorithm, and gave the specific form of the 
model[10]. 

Therefore, this paper studies a GNSS/INS loosely 
coupled smoothing post-processing algorithm, and gives 
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the system model and measurement model based on 
kalman filter, so as to improve the navigation solution 
accuracy of the integration system when GNSS signal is 
out-of-lock. 

2 Inertial-Frame Navigation Equations  
INS navigation algorithm is based on the explicit inertial 
navigation equation. When initial pose and Velocity are 
given, navigation information can be obtained recursively. 
The inertial system navigation equation used in this paper 
is based on the local navigation frame. 

a. Position Differential Equations 
𝐿𝐿� � 𝑣𝑣�

�𝑅𝑅� � ��𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐� � 𝑣𝑣�

𝑅𝑅� � �
� � 𝑣𝑣� ⎭⎪

⎬
⎪⎫
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Where, L,B,h respectively represent the geographical 
longitude, latitude and height of the carrier.  v� ,v� ,v� 
respectively represent the velocity of body frame with 
respect to ECEF, resolved about the three axes of the local 
navigation frame ,which are east, north and up . R�,R� 
respectively represent the meridian radius of curvature 
and transverse radius of curvature. 

b. Velocity Differential Equations 
𝒗𝒗� � � 𝒇𝒇��

� � �2𝝎𝝎��
� � 𝝎𝝎��� � � 𝒗𝒗� � �� �2� 

Where,  ω��
�  is the Earth-rotation resolved into local 

navigation frame.  ω���  is the angular rate of local 
navigation frame with respect to ECEF.  f��

�  is specific 
force resolved into local navigation frame. g� is the local 
gravity vector of the carrier's position. 

c. Attitude Differential Equations 
𝑪𝑪� �� � 𝑪𝑪�

�𝛀𝛀��
� �3� 

Where,  C�
�  is coordinate transformation matrix of 

body frame with respect to local navigation frame. Ω��
�  is 

a skew matrix of angular rate of body frame with respect 
to local navigation frame. 

The pose of inertial navigation system is solved by 
strapdown algorithm updating. First, the angular rate 
measured by gyroscope is used to integrate Equation (3) 
to obtain the attitude update result. Then, the acceleration 
measured by accelerometer is used to integrate Equation 
(2) to obtain the velocity update result. Finally, the 
position update result is obtained by integrating equation 
(1) with the updated velocity result. 

3 GNSS/INS loosely coupled  
Fig.1 is the structural diagram of the loosely coupled in 
this paper. The accelerometer and gyroscope of INS 
output the current specific force and angular rate of the 
carrier respectively. Then, the position, velocity and 
attitude can be obtained by the strapdown algorithm 
updating. In the GNSS module, the observation of the 
base station and the rover station is used to carry out 
differential GNSS calculation to get the position and 
velocity. The difference of position and velocity between 
INS and GNSS is used as the input of kalman filter. And 
the relevant information is stored during the filtering 
process. Then the state error estimate of inertial 
navigation system is obtained by integration navigation 
algorithm. The error estimate is used to correct the initial 
values of INS. And the information stored in the whole 
filtering process is used to smooth. The GNSS/INS 
integration system adopts closed-loop feedback 
correction, so that the state error can be kept at the optimal 
value. Finally, the position, velocity and attitude of the 
carrier with high accuracy and stability can be obtained.  

 
Fig. 1. Structure of the loosely coupled 

 

3.1 System mode  

GNSS/INS system model is based on the error equation 
of INS and the error model of inertial components. Error 
equation of inertial navigation system are: 
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Where,  φ� � , δv� � , δp� �  respectively represent attitude 
error, velocity error and position error. F��  and F��  are 
coefficient matrix. Its specific form can be referred to 
references [11]. 

In addition, the error model of inertial components is: 
𝛿𝛿𝒇𝒇��

� � 𝛿𝛿�� � ��
𝛿𝛿𝝎𝝎��

� � 𝛿𝛿�� � ��
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Where, δb�  and δb�  respectively represent 
accelerometer bias and gyroscope bias. w�  is the offset 
white noise of accelerometer. w� is gyro drift white noise. 
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The state vector is composed of attitude error, velocity 
error, position error, gyroscope measurement error and 
accelerometer measurement error, namely 

X � ��φ���, �δv���, �δp���, �δb���, �δb����
�
 

The state equation of GNSS/INS loosely coupled can 
be written as: 

𝑿𝑿� �𝑡𝑡� � ��𝑡𝑡�𝑿𝑿�𝑡𝑡� � ��𝑡𝑡�𝒘𝒘�𝑡𝑡� �6� 
Where, F�t� is the system matrix. G�t� is system noise 

distribution matrix. w�t� is the system noise vector. 

3.2 Measurement model 

The observation of loosely coupled takes the difference 
between the output position and velocity of GNSS module 
and the output position and velocity of INS as the 
measurement information of kalman filtering. The 
measurement model of the system is as follows: 

𝒁𝒁�𝑡𝑡� � � 𝑟𝑟���
� � 𝑟𝑟����

�

𝑣𝑣���
� � 𝑣𝑣����

� � �7� 
Equation (7) is expressed as the measurement equation: 

Z�t� � H�t�X�t� � V�t� �8� 
Where,  Z�t�  is measurement vector. H�t�  is 

measurement matrix. V�t� is the white noise sources. 
Discrete equations (6) and (8): 

𝑿𝑿� � 𝚽𝚽�,���𝑿𝑿��� � ����𝒘𝒘���
𝒁𝒁� � 𝑯𝑯�𝑿𝑿� � ��

� �9� 
Where,  X�  is state vector at time k . Φ�,���  is 

transition matrix from time k � 1 to time k. Γ���  is the 
system noise distribution matrix from time k � 1 to time 
k. w���  is the system noise vector from time k � 1 to 
time k . Z�  is measurement vector at time k . H�  is 
measurement matrix at time k . V�  is the measurement 
noise vector at time k. 

4 Kalman filtering and smoothing 
The kalman filtering process mainly consists of two parts: 
time update and measurement update. Its basic equation 
is:  

X��,�/��� � Φ�,���X��,���
P�,�/��� � Φ�,���P�,���Φ�,���

� � Γ���Q���Γ���
� � �10� 

Equation (10) describes the time update in kalman 
filter. In this process, the state estimator X��,���  and the 
covariance matrix P�,���  at time k � 1  predict the state 
vector X��,�/���  and error covariance matrix P�,�/���  at 
time k. Q��� is the system noise covariance matrix at time 
k � 1. 
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Equation (11) describes the measurement update in 
kalman filter, This process corrects the state vector 
according to the current time measurement vector, and 
then obtains the system state covariance matrix P�,� and 
system state estimate X�,� at time k. K�,� and R� represent 

the kalman gain matrix and the Measurement noise 
covariance matrix at time k respectively. 

In the above kalman filtering process, X��,�,Φ�,���, 
X�,�/���,P�,�/��� at each moment is sequentially stored. 

The result of kalman filtering is taken as the initial value 
of reverse smoothing. Then the reverse smoothing 
algorithm is executed in reverse order: 

𝑨𝑨� � 𝑷𝑷�,�𝚽𝚽�,���
� 𝑷𝑷�,���/�

��

𝑿𝑿��,� � 𝑿𝑿�,� � 𝑨𝑨��𝑿𝑿�,��� � 𝑿𝑿��,���/��
𝑷𝑷�,� � 𝑷𝑷�,� � 𝑨𝑨��𝑷𝑷�,���/� � 𝑷𝑷�,����𝑨𝑨�

�
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Where,  A�  is Smooth gain matrix, X�,�  is the state 
vector after smoothing, P�,� is the covariance matrix after 
smoothing. In this paper, the error is taken as the filtering 
state vector, so after each filtering. The position, velocity, 
attitude information, gyroscope bias and accelerometer 
bias should be closed-loop corrected, and the state vector 
should be set to zero. 

5 Experimental analysis 
The experimental data used in this paper are measured by 
Vehicle mobile mapping system. The Vehicle mobile 
mapping system is equipped with NovAtel's SPan-LCI , 
GNSS receiver and other experimental equipment. The 
sampling rata of inertial data is 200HZ, and that of GNSS 
data is 5HZ. 

Tab.1 Performance index of the SPAN-LCI 

Performance Gyroscope Accelerometer 
Bias stability � 1�0°/ℎ𝑟𝑟 � 1�0�𝜇𝜇 
Random walk � 0�05°/√ℎ𝑟𝑟 50𝜇𝜇𝜇𝜇/√𝐻𝐻𝐻𝐻 
Sampling rate 200𝐻𝐻𝐻𝐻 200𝐻𝐻𝐻𝐻 
 
In order to study and analyze the performance of 

GNSS/INS loosely coupled smoothing algorithm under 
GNSS signal blocking environment, a section of 
experimental data with good reception of satellite signals 
was intercepted. And the artificial lockout of 60s was 
performed on this section of data to simulate the lock-out 
environment. To verify the usefulness of the algorithm 
used in this article, navigation results processed by 
InertialExplorer8.60 (IE8.6) were used as reference 
values. 

 
(a) 

 
(b) 
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(c) 

Fig. 2. Position error of GNSS/INS loosely coupled 
 

It can be seen from Fig 1 that when GNSS signal is 
completely out of lock, GNSS module cannot provide 
accurate navigation solution for integration system. At 
this time, the inertial error accumulates with time, and the 
position error increases exponentially. After processing 
by the backward smoothing algorithm, the position error 
presents a smooth line, and the accuracy is higher. 
Combined with the position error statistical table (Table 
2), when only forward Kalman filtering is used, the 
maximum error and RMS error in N, E and U all reach the 
level of meters, among which the maximum error in E 
direction reaches 3.175 meters and the root mean square 
(RMS) error reaches 1.422 meters. After backward 
smoothing, the maximum error of the three directions and 
the RMS error are all in centimeters. Thus, the backward 
smoothing algorithm greatly improves the precision of the 
combined navigation solution when the GNSS signal is 
out of lock. 

 
(a) 

 
(b) 

(c) 
Fig. 3. Attitude error of GNSS/INS loosely coupled  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Velocity error of GNSS/INS loosely coupled 

Table.2 GNSS/INS combined algorithm position, velocity and 
attitude error statistics  

 Kalman Filter Smooth 
MAX RMS MAX RMS 

Position 
error 

N/(m) 2.205 1.087 0.027 0.010 
E/(m) 3.175 1.422 0.038 0.020 
U/(m) 1.699 0.807 0.017 0.011 

Velocity 
error 

X(m/s) 0.072 0.031 0.042 0.009 
Y(m/s) 0.129 0.073 0.026 0.007 
Z(m/s) 0.037 0.014 0.010 0.007 

Attitude 
error 

Roll(°) 0.027 0.014 0.016 0.005 
Pitch(°) 0.024 0.013 0.012 0.005 

Heading(°) 0.316 0.247 0.123 0.006 
 
Combined with the velocity error statistical results in 

Table 2 and Fig 2, it can be seen that when the GNSS 
satellite is not available, the RMS error of the three 
directions of the integration system that only performs 
forward filtering is 3cm/s, 7cm/s, and 1cm/ s. The 
maximum velocity error in three directions reaches 
decimeters per second. After the backward smoothing, the 
RMS error of the velocity in the three directions are 
limited to the level of millimeters per second. It can also 
be clearly seen in Fig 2 that smoothing improves the 
accuracy of velocity. It can be seen from Fig 3 that the 
attitude accuracy after smoothing has also been improved, 
among which the heading angle accuracy is the most 
obvious. Combined with the statistical results of the 
attitude errors in Table 2, the RMS error of the roll angle 
and pitch angle are 0.014° and 0.013°, respectively. Due 
to the poor observability of the heading angle, the RMS 
error reaches 0.247°. After smoothing, the RMS error of 
the roll angle and pitch angle are both 0.005°, and the 
accuracy of the heading angle is also greatly improved. 

6 Conclusion 
In this paper, a GNSS/INS loosely coupled smoothing 
post-processing is studied. First, the GNSS solution and 
the INS solution are fused through the kalman filter, and 
the error of the inertial components is corrected by the 
state vector which output by the Kalman filter, and then 
the integration system is further processed by the 
smoothing post-processing algorithm. Finally, by 
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artificially simulating the GNSS signal loss-of-lock 
environment, the performance analysis of the integration 
system post-processing algorithm is carried out. 
Experiments show that, in the case of GNSS satellite loss 
of lock, smooth post-processing algorithm as a bridge 
algorithm can also greatly improve positioning accuracy. 
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