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Abstract. This paper presents the capabilities of analyzing different 
Darrieus wind turbine runners with the computer program Ansys Fluent. A 
K-omega turbulence model was used in the case of a two-dimensional flow 
with a suitable computational grid around the profile of the blades. The 
obtained theoretical performance characteristics were validated on test rig 
№7 (Wind Turbines) in the Laboratory of Hydropower and Hydraulic 
Turbomachinery (HEHT Lab) at the Technical University of Sofia. The data 
analysis shows that it’s possible to predict the performance characteristic 
and the optimum operating regime of the Darrieus wind turbine.   

1 Introduction  

The most commonly used mathematical models for calculation of tangential forces acting on 
wind turbine blades consider the runner as an ‘active disk’ [1, 2]. It is assumed to be an 
imaginary rotating body covered by one or more stream tubes.  The induced velocities 
through the ‘disk’ are considered to be constant. The calculations of the acting forces are 
performed for a rotating blade that crosses the stream tubes at a given moment. The chord of 
this blade has a length equal to the sum of the chord lengths of all the blades in the real runner. 
This simplified scheme is insufficient for a more in-depth study of the workflow. It gives 
satisfactory results in some cases with two and three-bladed runners (depends on solidity).   

The complex unsteady flow in most cases is impossible to be studied with classical stream 
tube models. Therefore, we go to the so-called numerical modelling of flows - Computational 
Fluid Dynamics (CFD). CFD modelling gives us detailed information about the flow 
(temperature, pressure, velocity field, etc.) at each point of the computational space. It 
calculates the stresses on streamlined surfaces and gives us the opportunity to visualize these 
results in the form of colour contours, isolines, graphs and stream line pictures. The results 
obtained by the CFD modelling can be compared with the results obtained by experimental 
research, which significantly reduces the time for conducting physical experiments. A 
sequential application of a numerical and physical experiment gives us the opportunity to 
analyse the flow through a synthesized blade system of a wind turbine runner. 
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Table 2. Recommended CFD grid parameters 

Max. volume 
ratio 

Min. orthogonal quality Max.aspect ratio 

15 0.2 60 

 

Table 3. Boundary layer grid parameters of the turbine blades. 

Max. cell 
size 

Min. cell size Wall distance Min. orth. quality Max. AR Layers 
Growth 

rate 

1 mm 0.180 μm 8 μm 0.86 22.5 30 1.05 

 

Table 4. Grid parameters of the computational domains. 

Fluid domain 

Max. cell 
size 

Min. cell size Min. orthogonal quality Max.aspect ratio Number  of cells 

245 mm 22 mm 0.85 2.1 160 506 

Runner domain 

Max. cell 
size 

Min. cell size Min. orthogonal quality Max.aspect ratio Number  of cells 

22 mm 1 mm 0.55 2.1 4 319 227 

Axis domain 

Max. cell 
size 

Min. cell size Min. orthogonal quality Max.aspect ratio Number  of cells 

7 mm 1 mm 0.81 1.756 9 302 

2.3 The turbulence model 

The turbulence model k-ω SST (Shear Stress Transport) is a hybrid. It combining the 
Wilcox k-omega and the k-epsilon models. A blending function activates the Wilcox model 
near the walls and the k-epsilon model in the free stream. This ensures that the appropriate 
model is utilized throughout the flow field. The transport equations of the k-ω model are 
described below. 

Specific dissipation is defined as:  

ω  = 
ఌ

௞
                    (2) 

In equation (2) k is the turbulence kinetic energy and ε is the rate of dissipation of 
turbulence kinetic energy. 

The equation for the balance of turbulence kinetic energy k [8] is: 

                       
ఋሺ௣.௞ሻ

ఋሺ௧ሻ
 + 

ఋሺఘ.௨ೕ.௞ሻ

ఋ௫ೕ
 = P – β.ρ.ω + 

ఋ

ఋ௫ೕ
.൜ሾ𝜇ଵ ൅ 𝜎௞. 𝜇௧ሿ.

ఋ௞

௫ೕ
ൠ                             (3)  

where β and σk are constants, ω is the specific dissipation, μ1 is the molecular viscosity and 
μt is the turbulence viscosity.  
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The first term on the left side of the equation is local, transient, taking into account the 
degree of change of the turbulence kinetic energy k; the second is convective, taking into 
account the transfer of k by convection. The first member on the right of the equation is a 
source taking into account the degree of generation of k; the second is dissipative, taking 
into account the degree of dissipation of k, the third is diffuse, taking into account the 
transfer of k by diffusion. 

The equation of the specific dissipation ω [8] is: 

ఋሺ௣.ఠሻ

ఋሺ௧ሻ
 + 

ఋሺఘ.௨ೕ.ఠሻ

ఋ௫ೕ
 = 

ఊ

ఔ೟
 – β.ρ.ω2 + 

ఋ

ఋ௫ೕ
.൜ሾ𝜇ଵ ൅ 𝜎ఠ. 𝜇௧ሿ.

ఋఠ

௫ೕ
ൠ + 2.{1 - F1}. 

ఘ.ఙഘ

ఠ
. 

ఋ௞

ఋ௫ೕ
. 

ఋఠ

௫ೕ
           (4) 

The first term on the left side of the equation is local, transient, taking into account the 
degree of change of ω; the second is convective, taking into account the transfer of ω by 
convection. The first term on the right-hand side of the equation is the source, taking into 
account the degree of generation of ω; the second is dissipative, taking into account the 
degree of dissipation of ω, the third is diffuse, taking into account the transfer of ω by 
diffusion; the fourth is ‘mixed-diffuse’, which is an additional source member, responsible 
for modelling the transition from ε to ω. 

3 Compared quantities 

The power factor values are determined by the dependence [3, 8]: 

cp  = 
௉

௉ೢ
                    (5) 

P  = Mb.ω  = Mb.
గ.௡

ଷ଴
 .T                   (6) 

      Pw  = ρ.S.
஼ೢ,ೞ

య

ଶ
                                           (7) 

In equation (5) P is the effective power (on the shaft) of the turbine and Pw is the power of 
the airflow. In equations (6) and (7) Mb is the torque; n – angular velocity, cw,s – average 
wind speed, S = H.D1 – cross-section of the runner, perpendicular to the vector of the wind 
velocity. It should be noted that in the two-dimensional CFD model the dimension D1 is 
used in equation (7) instead of S. The calculations and experiments were conducted for the 
same average wind velocity: cw,s = 8.1 m/s.  

For each experiment the so-called speed ratio TSR [3, 8] was used. This is the ratio 
between the tangential speed of the tip of the blades - u and actual speed of the wind - cw,s.  

                                                         TSR  = 
௨

௖ೢ
                                         (8) 

The experiments were performed on test rig №7С in the laboratory of Hydropower and 
Hydraulic Turbomachinery at the Technical University of Sofia – HEHT [3, 4, 5, 9].   
 

2.4 Solver settings 

Since the Mach number in the current conditions is below 0.3 we consider the flow to be 
incompressible. That’s why we switch to a pressure-based solver.  

This solver allows us to resolve a flow problem in either a segregated or a coupled 
manner. Ansys Fluent provides the option to choose among five pressure-velocity coupling 
algorithms: SIMPLE, SIMPLEC, PISO, Coupled, and Fractional Step (FSM) (for unsteady 
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• Numerical results predict the location of the maximum value of the power coefficient with 
an error up to 0.3 %. 
• The differences in the maximum value of the power coefficient between the numerical 
and experiment data is 7 % (Fig. 4a) and 4 % (Fig. 4b).  
• Numerical data shows larger values of a power coefficient at values of tip speed ratio 
larger than 0.27 (Fig. 4a) and 0.285 (Fig. 4b). The maximum difference is 41.7 %  (Fig. 4a) 
and 51.3% (Fig.4 b).   
• Numerical and experimental data give similar results at values of tip speed ratio lower 
than 0.27 (Fig. 4a) and 0.285 (Fig. 4b).  
The numerical and the experimental data from other similar studies [6, 7] shows up to 57 % 
difference of power coefficient with k-omega SST turbulence model and 20 % with RNG  
k – ε turbulence model.  

6 Conclusion 

The main results of this study are expressed as following: 

1. A numerical study of a model Darrieus VAWT has been made.   

2. Two runners have been examined, with a different pitch angle of the blades. 

3. The obtained results have been validated on test rig №7C in HEHT Lab [3, 4]. 

4. The graphs show that the turbulence k-omega model can predict the performance 
characteristics of Darrieus VAWT with up to 7% error in the optimal operating regime. 

7 References 

1. N. Batista, R. Melício, V. Mendes, J. Figueriedo, A. Reis. Darrieus Wind Turbine 
Performance Prediction: Computational Modeling. IFIP, series IFIPAICT, vol, 394, pp. 
382-391, (2013). 

2. Parachivoiu, I. Wind Turbine Design: with emphasis on Darrieus conscept, 1st edn. 
Polytehnic International Press, Canada (2002). 

3. Obretenov, V., R. Iliev. А new model vertical axis wind turbine. Proceedings of the 
Scientific Conference EMF`2018, vol. ІІ, pp. 288-295, Sozopol, (2018), in Bulgarian. 

4. Obretenov, V., Ts.Tsalov. Guide for laboratory exercises in hydro and wind energy. 
(machinery and equipment).  ‘Publishing house of the University of Ruse’, (2017), in 
Bulgarian. 

5. Obretenov, V., Ts. Tsalov, Ch. Chakarov. Vertical axis wind turbine. Proceedings of 
the Scientific Conference EMF `2012, vol. ІІ, pp. 28-34, Sozopol (2012), in Bulgarian.   

6. Almohammadi, K.M., D.B. Ingham, L. Ma, M. Pourkashan. Computational fluid 
dynamics (CFD) mesh independency techniques. Energy vol. 58, pp. 483-493, (2013).  

7. Balduzzi, F., A. Bianchini, R. Maleci, G. Ferrara, L. Ferrari. Critical issues in the CFD 
simulation of Darrieus wind turbines. Renew Energy vol. 85, pp. 419-435, (2016). 

8. Ahmedov, A, K Tujarov, G. Popov. Methodology for Numerical Modeling the 
Performance of Vertical Axis Wind Turbines. Proceedings of the University of Ruse, 
vol 53, pp. 194 – 200, Ruse, (2014), in Bulgarian.   

9. Obretenov, V.S., Ts. Tsalov.  The new hydraulic laboratory at the Technical University 
of Sofia. Proceedings of the IX international scientific and technical conference 
‘Hydraulic machines, hydraulic drives and hydro- and pneumatic automation. Current 
status and development prospects’ pp. 79-87, St. Petersburg, (2016). 

    E3S Web of Conferences 207, 0 (2020)
PEPM'2020

2012 https://doi.org/10.1051/e3sconf/202020702012

8


	PEPM_CFD_Darrieus_Camera_Ready_01
	PEPM_CFD_Darrieus_Camera_Ready_middle

