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Abstract. The paper compares the performance of two embedded 
controllers applied in electrohydraulic steering systems – model predictive 
controller (MPC) and linear-quadratic Gaussian (LQG) controller with 
Kalman filtering for state estimation. Both controllers are designed on the 
basis of single input multiple output “black box” model obtained via 
identification approach. The controllers are implemented  into industrial 
logic controller for mobile applications and their workability is 
experimentally checked with a laboratory model of a steering system for 
non-road mobile machinery. The results corresponding to investigation of 
performance of the closed-loop system are presented.  

"�#
���������
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From theoretical point of view, LQG and MPC are similar because of the analytical form of 
the cost function which is quadratic weighting plant state and the control signal. However, 
the approaches used for the minimization are quite distinct. The design of LQG usually takes 
integral of the cost from initial time to infinity (so-called infinite time case) which leads to 
fast converging solution of the differential Ricatti equation allowing to formulate linear state 
feedback controller. Then the state is estimated with the help of Kalman filter assuming white 
noise disturbance acting in the state and output equations. The MPC design assumes finite 
time quadratic cost function and incorporates amplitude and rate constraints for the control 
and state signals [1]. The solution, which minimizes the cost function, is obtained during each 
sampling interval by iterative procedure with respect to the control action sequence for the 
whole prediction horizon. However, only the first value of that sequence is actually applied 
as a current control action, because in the next sampling period the optimization is repeated. 
During the optimization, the system model is used to predict the state and output value.  

These two quadratic approaches to the control of electrohydraulic steering unit are not 
investigated much in literature and the main question is whether we can achieve some 
considerable benefit in terms of tracking performance or robustness by employing more 
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computationally intensive MPC strategy or more theoretically guaranteed approach with 
LQG.  

The main purpose of this article is a comparative analysis of the performance for the 
closed-loop systems with two embedded controllers applied in electrohydraulic steering 
systems – model predictive controller (MPC) and linear-quadratic Gaussian (LQG) 
controller with Kalman filtering for state estimation. For the both system respective state-
space mathematical models are identified to facilitate the controller synthesis. To investigate 
the performance of the closed-loop system several control indexes are determinate. The 
comparative analysis of time and frequency domain properties of controllers are performed. 
A number of experimental tests describes synergistic effect between the two subsystems – 
electrohydraulic and embedded control systems.  

$�%���&������ ����
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��	 	������	�������
�

The embedded ��� and LQG controllers are subjected for a power steering laboratory test 
rig which is based on EHSU type OSPEC200 LSRM. The laboratory system is developed 
respect to technical data sheet from producer of mobile machinery equipment [2]. The circuit 
diagram of hydraulic system of the test system is in detail described in [3].  

$'$���(������
������
�	 	����

The main proposition of this article is a developed real-time system for study of MPC and 
LQG algorithms for control of electrohydraulic steering device (Fig. 1). The data acquisition 
and physical signal manipulation are done by using a controller type MC012-022 [1]. The 
plant measured output signals are the proportional spool position, flow rate and cylinder 
piston position. The control action from the controller is a pulse width modulated voltage 
applied to the PVE electrohydraulic block. The communication between the PLC and the 
Simulink® real-time simulation model, which is deployed on the conventional workstation, 
is performed via CAN communication channel. The main control system signals are sent to 
workstation for real-time visualization. Therefore, the computational possibilities of the PLC 
are extended with those of the dedicated workstation. Such architecture requires that the rate 
of transmitted data must be significantly higher than the control system sampling time. The 
communication initiates from the controller. It sends a data packages with 10 ms period 
respect to the control system sampling interval. So within that period the message is 
transmitted to the Simulink® model. Then it is starting on the workstation for a time �� , 

evaluating control signal for a time ��  and a response  message is send back to the 

microcontroller for a time $� . The time critical element in the so described communication 

protocol is the time for processing a single iteration on workstation. However if we assume 
that the workstation is fast enough then the duration of communication is 

� � $ %"%�� � �� � � . 

Thus we obtain the system which function in real-time. To interfaces with the CG150 
USB/CAN communication cable converter, we design a specialized communication block, 
which uses MATLAB® Vehicle Network Toolbox. In it, components for CAN 
communication adapted for various vendors are included. The block developed receives CAN 
messages in a blocking mode. Hence the execution of the simulation model is blocked until 
the message synchronized with the 10 ms time frame arrives. Then the model blocks are 
executed for one step and when the execution of the communication block is in order it blocks 
simulation again till arrival of the consequent CAN message from the MC012-022 
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microcontroller. Since the workstation, computational possibilities can be extended 
significantly, the proposed architecture allows implementation of more complicated and 
computationally demanding controllers like MPC.  
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Fig. 1. Extended computational system for real-time implementation of designed controllers. 

)�! 	����������
To record input-output, data open loop identification experiment is performed (Fig.2). The 
sample rate is 40 Hz. 

 

Fig. 2. Block scheme of open-loop identification experiment. 

 
The system used in identification procedure [4] is composed of microprocessor, hydraulic 
steering device, steering servo cylinder and  piston position sensor. The data set  for plant 
parameters estimation is depicted in Fig.3 where the manipulated variable is shown in mV 
for increased quantization.  

The obtained model takes the state space form 
' �( ' ( ' ( ' (x k Ax k Bu k Ke k� � � �      (1) 

' ( ' ( ' ( ' (y k Cx k Du k e k� � � ,      (2) 

where � �� � $

Tx x x x� is the state vector, u is the control signal,  

� �T

spool flow pistony y y y� is the output signal and � �� � $' (
Te k e e e�  is the vector of 

residual errors [5].  The matrices model (1)-(2) are 
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and covariance matrix of residual error is 

$
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For the state space model (1)-(2), the state variables can be estimated by the Kalman filter 
/ / /' �( ' ( ' ( ' (' ' ( ' ( ' ((x k Ax k Bu k L k y k Cx k Du k� � � � � � ,   (5) 

where the Kalman gain is obtained by 
�' ( ' 0 �( ' ' 0 �( (T TL k P k k C CP k k C R �� � � � ,     (6) 

where � �0 �P k k �  is the covariance matrix of the estimation error � � � �0 �hatx k x k k� �  . 

� �0 �P k k � is the solution of the Ricatti equation 

�

' � 0 ( ' 0 �(

' 0 �( ' ' 0 �( ( ' 0 �(

T T

T T T

P k k AP k k A KQK
AP k k C CP k k C R CP k k A�

� � � � �

� � � �
.   (7) 
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8����� ����@AB1	� !��8� �������75���������������������� ��� �?��� �����77����"�1����2��
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#�������� ���� ��� 7������� ���� 7���� !��7����� ���� 7���������������� ��� 7�7����� ���������7����
�������!��������������#����8��7�����������������!��������������:���7������������������
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� ��	�	����The constraints on the control signal are set to 

1&&&mV� . The output weights of MPC cost function are set for � &w � , 2 &�3w � and 

5 ��w � �

)'$�������
����������	��
�

The block diagram of control system based on LQR controller and Kalman filter is shown in 
Figure 3. The LQR with integral action is designed, which provides good reference tracking 
[8]. The synthesis is performed for the estimated model (3)-(4). In this model the additional 
state is introduced. It is discrete time integral of position error 
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Fig. 3. Structure of the LQG closed-loop system. 

� �� � � � � � � � � � � ��i i s v i s ref posx k x k T e k x k T y k y k� � � � � � ,   (12) 

where is the reference. Thus, combining the deterministic parts of equation (3) and (4) with 
equation (12) one obtains the augmented system 

� �� � � � � � ��

� � � ��
refx k Ax k Bu k Gy k

y k Cx k

� � � �

�
     (13) 

where 6 � 5 �
5 �

5

� � & &
� � � � � & �

� � � &i s s

x k A B
x k A B C C G

x k T C T
� �

�� � � � �
�

 and 5C is the third row 

of matrix C .  
The controller algorithm is selected as 

� � � �� 7 8c iu k Kx k K K K� � � � ,     (14) 
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cK is matrix gain of state feedback term and iK is the integral component. The optimal 

matrix K is obtained by minimization of 

&
� � � � � � � � � �T T

k
J u x k Qx k u k Ru k

�
�
�

� � ,     (15) 

Where Q  and R are positive definite matrices chosen to provide acceptable performance of 

closed-loop system. The optimal matrix K is determined by [4] 
�� �T TK R B PB B PA�� � ,      (16) 

where P  is the positive definite solution of the discrete-time matrix algebraic Riccati 
equation 

�� � &T T T TA PA P A PB R B PB B PA Q�� � � � � .    (17) 

The controller matrices � �9�2; 1;��3 61��9cK � � �  and 9�9;iK �  are obtained for 

5
� 5

5 �

�& &

& 1&& T
Q

C C
�

�

� �
� ��
� �� �

 and �&&R � . 

The state variables x(k) is not accessible, so the optimal control law (4) is formed as 
<� � � � � �c i iu k K x k K x k� � � ,      (18) 

where <� �x k is estimate of � �x k . It is obtained by discrete time Kalman filter (5) and (6). 

2��������	�
��
�� 	�	����������	���	�&������	��
�����
�������	�
The analytical comparison between MPC and LQG controllers is difficult because the LQG 
closed system is linear, however the predictive controller is nonlinear by its design and so is 
the closed-loop system with it. However, we know that the real plant dynamics is only 
slightly nonlinear so we should be able to linearize the closed loop system with the predictive 
controller.  

In order to do that, we convey an identification experiment with the MPC controller and 
the plant model. The input excitation to the MPC closed-loop system is reference signal 
which is composed of step function to 100 mm and a frequency sweep from 0.005 to 0.3 Hz 
additively introduced in the reference channel after 30 sec, when the cylinder position reaches 
the target. The final time for the frequency sweep is set to 200 sec and its amplitude is 10mm. 
The output signal for identification is cylinder piston position obtained from simulation of 
the nonlinear system containing the electrohydraulic steering system model resampled at 
10ms and the designed MPC. We have estimated a 6th order ARX model of the form 

� � � � � � � � � �� �
pistonA q y t B q r t e t� �� � ����������������������������������(19) 

where the polynomials � and � are estimated from the recorded 20000 samples of data to 

� � �� � 2 5 6 1 ;� 2��5 &�&5 &��; &��9 &�2;A q q q q q q q� � � � � � �� � � � � � � �� (20) 

� � � � �� � 2 5 6 1 1&�23 =�65 �6�62 1�92 5��� 2��9 �&B q q q q q q� � � � � � �� � � � � � � �� (21) 

The model achieves 100% FIT to the identification data when used as a predictor and 
76% FIT when used as simulator. The final prediction error is ;=��2 �&��  and the mean 

square error is ;=��� �&�� . Estimated model can be used to compare the MPC and LQG 
closed-loop systems in frequency domain. The comparison is presented in Fig.4.  

    E3S Web of Conferences 207, 0 (2020)
PEPM'2020

4001 https://doi.org/10.1051/e3sconf/202020704001

 

6



 
Fig. 4. Complementary sensitivity function. 

As can be seen both system have analogical amplitude frequency response in the low and 
middle frequency ranges. The bandwidth of both systems are comparable, the system with 
the LQG has slightly larger bandwidth, which we may assume that can be compensated with 
additional tuning of the controller. However, the MPC demonstrate a higher gain in the high 
frequency range, which makes it more sensitive to measurement noise.  

Fig. 5 compares the sensitivity of the closed-loop system with both controllers. The 
differences here are more pronounced in comparison to previous figure. The LQG 
demonstrate a clearly better disturbance attenuation – it scales down output disturbances 
more than 1000 times at 0.0001 rad/s. However, the MPC closed-loop system is more 
sensitive to output disturbances by attenuating their amplitudes no more than 50 times. This 
can be a strong argument to prefer LQG design before the MPC. Of course, here we again 
have to say that MPC specification can be alleviated in such a way to increase the low 
frequency disturbance attenuation by introduction of respective disturbance model. 

 

Fig. 5. Sensitivity function of the closed-loop 
error with respect to output disturbance. 

 

Fig. 6. Step response of the closed-loop system. 

The step responses of the closed-loop system with LQG and MPC controllers are 
compared on the Fig.6. In addition to better attenuation of output disturbances, the LQG is 
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clearly faster as a response, achieving its steady state level around 10 sec. The MPC step 
response is around twice slower - 20 sec. However, we observe a small overshooting for the 
LQG which may be undesirable for tracking performance. But we’ve decided to investigate 
this more during the experiments with the electrohydraulic steering system test bench. 

2'"�#������
�����
������	��
�����
�������	�

The experiments with MPC and LQG controllers are performed by the specialized Simulink® 
model depicted in the Fig.7. The communication on the CAN channel between MC012-022 
and the workstation is supported through MATLAB® Function block. This block also 
guarantees that the model will run in a blocking mode of operation. The designed control 
algorithms is realized in state-space block for LQG and in the MPC Controller block for the 
MPC.  

 

Fig.7. Specialized Simulink® model for controller’s implementation. 

2'$��������	�
�����3������
������	���	�

Tracking performance of the closed-loop system with the MPC and LQG controller is 
compared in Fig.8. Both controller reach the reference for an approximately identical time. 
However, there is clear pronounced overshoot of the system with the MPC controller in the 
first two steps from the reference signal. Generally, the tracking accuracy of the MPC system 
is worse because we can see prolonged period of non-zero tracking error. The LQG controller 
achieves zero tracking error for approximately 5 sec which is uniform in both directions of 
piston translation. Also the LQG controller reaches the target in an aperiodic transient which 
is indicative for better stability margin.  

The control signal from two controllers are depicted in the Fig. 9. The control signals 
generated from MPC and LQG controller share similar features as maximal amplitude and 
steady state. However, we may notice that the control signal of the LQG controller is 
smoother and less oscillatory than the MPC signal. 

Figure 10 presents the position of the internal spool valve, which is responsible for 
directing the flow through the steering cylinder.  Both controllers react with a maximal valve 
opening in the beginning of the transient when the actual positon is far from the desired piston 
positon. However, when the tracking error is small the reaction of LQG and MPC controller 
is radically different. The MPC controller move the spool fast in the opposite direction to 
compensate for the positon overshooting. After that the spool is opened once more in the 
initial direction to compensate the second period of the tracking error oscillation. In addition 
there are observed high frequency oscillations in the spool positon with the MPC controller 
which are not problematic for the spool mechanics but can create flow rate instability which 
is evident in the Fig.8. The reaction of the spool position for the closed-loop system with the 
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LQG controller is aperiodic. Instead of bumping in the opposite direction the LQG controller 
begin to close the spool valve when the tracking error becomes small enough which dampens 
the accumulated kinetic energy in the system. This allows for more accurate positioning of 
the cylinder while reaching the target. 

 

 

Fig.8. Comparison of measured cylinder piston 
transient response. 

 

Fig.9. Comparison of measured control signal. 

 

 

Fig.10. Comparison of measured spool position. 

 

Fig.11. Comparison of measured flow rate. 

Figure 11 compares the flow rate for the MPC and the LQG controller measured at the 
inlet port of the electrohydraulic steering unit in l/min. As can be seen the flow rate for the 
closed-loop system with the MPC controller is more oscillatory which is not very acceptable 
for the hydraulic systems since the transients of flow direction changes are related to extreme 
pressure events which are not advantageous for the system [9]. The flow rate of the closed-
loop system with the LQG controller is practically zero at steady state which is result of the 
improved accuracy of the positional loop. When the desired position is achieved no flow is 
needed for a correction. The maximal amplitudes of the flow rate achieved with the both 
control algorithms are comparable, however the LQG amplitude is smaller. Generally, the 
LQG controller requires less energy to achieve the desired position. 
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The results achieved in this articles show that for an electrohydraulic steering systems which 
can be described well enough with a linear time-invariant models the linear-quadratic 
Gaussian controllers should be preferred before the model predictive controller. There are 
several reasons which are in favour of LQG implementation. First is considerable more 
compact and less computationally intensive software algorithms which can be executed on 
most of the modern specialized PLC controllers for mobile applications. Second the 
performance of the LQG controller in the experimental evaluation conveyed in this paper 
proved better than the MPC in terms of relative stability and accuracy. Of course we don’t 
exclude the possibility of additional tuning of MPC parameters in order to reach a better 
performance. However, such tuning may require considerable more time in comparison with 
the LQG controller tuning. In addition, proving the stability and robustness of MPC 
algorithms will require a lot more effort than for LQG, where feasibility of controller is 
guaranteed in a large extend during the synthesis. Practical implementation of the MPC as an 
embedded algorithm require a lot more software modules including quadratic programming 
algorithms, full scale model simulation, memory for the predicted signals. Alternative to this 
is implementation of explicit MPC control where a piecewise linear mapping is defined of 
the state space facilitating feedback control. However, achieving an effective approximation 
of such mapping requires additional computational time and have to be justified by the 
complexity of the system dynamics. 
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