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Abstract. Investigations of the application of classical methods of dynamic state estimation on the data of 

a real power system for the purposes of optimal control have been carried out. A modern feature of state 

estimation for a large power system is that data from the SCADA system are fed to the calculation 

subsystem with a fairly small frequency. It is shown that the use of classical methods of dynamic state 

estimation for such problems is limited. The study was carried out using the ergodic theory of a dynamical 

system. 

1 Introduction  

The diversification of the energy sector in the Russian 

Federation and the subsequent forced digitalization were 

the catalyst for the creation of an intelligent energy 

system in Russia. Such an electric power system (EPS) 

contains a significant number of elements, the mode of 

which is stochastic in time. This is due to the large 

number of local control devices, the algorithm of which 

is not defined at the power system level. Along with this, 

in distribution networks, the problem of optimal control 

is become even more complicated due to the small 

number of measuring devices and significant uncertainty 

of measurements. To solve the problems of operational 

and emergency control, a mathematical model of the 

current state of electric grid is used. 

At the same time, for the problem of optimal control, 

and especially for the problem of automatic optimal 

control, a reliably functioning state estimation algorithm 

[1] is required that works without human intervention. 

In static state estimation, one uses the relationships 

between physical parameters of the single steady state, 

but there is additional information about the change in 

these parameters over time. This information ca n be 

used by applying dynamic state estimation algorithms. 

At the same time, the practical application of dynamic 

state estimation algorithms for optimal control purposes 

encounters computational difficulties. In this paper, an 

attempt is made to investigate the possibility of using 

existing dynamic state estimation. This information can 

be used by applying dynamic state estimation algorithms 

on a model of a sufficiently large power system using 

real telemetry received from a SCADA system. 

2 State estimation problem statement  

In a static formulation, the assessment of the EPS state is 

the calculation of the parameters of the state, carried out 

on the base of  SCADA measurements  ̅.  

 ̅  [                       ] 

The measurements vector includes: modules of nodal 

voltages   , generation of active    and reactive power    

in nodes, power flows of active     and reactive power 

    through overhead lines and transformers, less often 

currents at the ends of overhead lines     and nodal 

currents   , some integral characteristics of the mode. To 

obtain nodal injections, in addition to measurements of 

loads and generation power, pseudo-measurements are 

used. 

The task of state estimation is to find such estimates 

of the measured parameters      that are closest to the 

measured values  ̅. The sum of the weighted squares of 

the deviations of estimates from measurements is most 

often used as a criterion for proximity [2]. 

  [ ̅      ]   
  [ ̅      ] 

where   
   is a diagonal matrix of weight coefficients 

whose elements are inverse to the variances of 

measurements characterizing their accuracy. 

Estimates must satisfy the electrical circuit equations: 

             

The result of state estimation is the state vector 

 ̂  [ ̂   ̂     ̂   ̂   ̂     ̂ ]
 
 (1) 

This vector contains the estimated voltages and its 

angles for each node. n – the total number of nodes in 

the model of the electrical grid. 

Within the framework of the problem of dynamic 

state estimation, the system is usually considered to be 

Markov. The change in the state vector of system (1) is 

considered in the form of the following Markov process: 
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           [ ̂   ̂     ̂   ̂   ̂     ̂ ]
 
 

To predict weakly variable components of the system 

state vector   for a short period of time, a dynamic state 

estimation is used based on a modification of the 

Kalman filter. 

The Kalman filter is a classic dynamic state 

estimation method. The essence of the Kalman filter is as 

follows. Suppose there is a time-varying parameter. The 

law of its change is known only with a certain error, so 

that: 

                  
where      is the assumed law of variation of  ,    is an 

uncertain value. Also, at each time step (starting from 

the first), there are actual measurements of the predicted 

parameter               , containing the 

measurement error. 

The idea behind the Kalman filter is that to get the 

best approximation to the proper value of     , one need 

to choose a compromise between measuring      and 

inaccurate prediction         . The measurement is 

assigned a weight of   , and the predicted value is 

assigned     , respectively. The Kalman coefficient 

changes at each iteration and is found by iteratively 

minimizing the squared prediction error 

      
   

  
 (    

     
 )

    
     

    
 
 

and the error-minimizing value of the Kalman 

coefficient on the next iteration 

     
      

  

  
 

  

where   
  is the variance of the measurement error, and 

  
  is the variance of the model error. 

For the nonlinear model      , an extended Kalman 

filter is used [3, 4] or faster methods that approximate 

nonlinearity, such as the Sigma-point Kalman filter 

(Unscented Kalman Filter), based on the same-name 

Unscented transformation. 

A modern feature of state estimation for a large 

power system is that data from the SCADA system is 

fed to the calculation subsystem with a fairly small 

frequency. In the power system under consideration, the 

snapshots of measurements is formed at the 30-minute 

boundary. If there is WAMS, you can get consistent data 

much more often. In this case, the status evaluation 

period can be shortened to 10 seconds. However, for the 

purposes of automatic optimal control, when the 

problems of emergency management are not considered, 

the formation of a snapshots at the 30-minute boundary 

and, accordingly, the state estimation may be quite 

sufficient. 

The use of classical methods of dynamic state 

estimation [5] on 30-minute snapshots of measurements 

obtained from SCADA, as shown by calculations, was 

not effective. Indeed, the change in load showed a 

chaotic nature. Fig. 1 shows the change over two days of 

the measured active load power and its estimates using a 

static state estimation algorithm. On the ordinate axis, 

the sequential number of the snapshot (half-hour) is 

deferred. Changes in values are given for a single node, 

but the nature of changes is similar for most load nodes 

in the network. 

 

Fig. 1. Measured and estimated load in one of the grid nodes. 

 

Similar chaotic behavior is observed in voltage and 

power flow measurements (Fig. 2, Fig. 3). 

As a result of applying the Kalman filter with a linear 

or moving average model, we get a mode with a greater 

error than with static state estimation. In this case, there 

is either a delay and a roughen of the state (Fig. 4), or in 

some cases there is a outage of the computational 

stability of the algorithm. This behavior is explained by 

the fact that the error of the model    significantly 

exceeds the measurement error     . 

 

 

Fig. 2. Measured voltage. 

 

 

Fig. 3. Measured power flow. 

 

In order to understand the possibility of creating an 

adequate model for predicting the process of changing 

sates parameters over time, the ergodic theory [6, 7] of 

dynamic chaos was applied. The process of changing 

states was considered as a dynamic system with an 

unknown control law. 
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Fig. 4. Lag of the value filtered by Sigma-point Kalman filter. 

X – measured value, Xkf – filtered value. 

 

To study the behavior of a system in the vicinity of 

an arbitrary trajectory, we use Lyapunov exponents that 

characterize the degree of stretching and compression in 

the phase space of the system's motion (changes in its 

parameters) along stable and unstable directions (5). 

 

Fig. 5. The trajectory of the system is  .    is a stable 

manifold,    is an unstable manifold of the system's 

trajectories (the figure is taken from [7]). 

 

Let the dynamics of the system be given by a system 

of differential equations: 

 ̇             (2) 

where   is a vector of dynamic variables that depend on 

time  , and   is a set of non-changing parameters. 

Consider the typical phase trajectory      of the system 

(2) and the trajectory close to it: 
                 

The function that defines Lyapunov exponents is 

written as: 

        
   

 

 
  

|    |

|    |
 (3) 

For       , the values of function (3) are a vector 

with a dimension equal to the dimension of the phase 

space  : 

     {          }  
If      does not contain positive values, then there is 

no chaotic component and the evolution of the system is 

completely predictable. 

Obtaining the law of changing of the state parameters 

in time in the form (2) is impossible due to the 

complexity of the system under consideration. Therefore, 

it is necessary to apply the method of reconstructing a 

dynamic system from the available measurements using 

Takens' theorem. This theorem substantiates the 

possibility of reconstructing a strange attractor of a 

chaotic dynamical system from a sequence of 

measurements of one of its parameters taken at equal 

time intervals  : 

  {                             }  (4) 

This approach to the analysis of time series was 

mathematically substantiated in the work of F. Takens 

[8, 9]. Reconstruction of the entire d-dimensional phase 

space (embedded space) from measurements of one 

variable is possible due to the fact that all variables of 

the state vector of the system are tied up in a general 

nonlinear process. 

The maximum Lyapunov exponent is defined as: 

        
   

   
   

 

 
  (

|          |

 
)  

To determine the maximum Lyapunov exponent 

based on a finite series of measurements (4), we use the 

algorithm proposed by Rosentein [10]. Consider the 

representation of time series data as a trajectory in a 

reconstructed nested space. Individual trajectories of the 

system movement in the reconstructed space fluctuate 

along the main trend determined by the Lyapunov 

exponent spectrum. Then we can consider the distance 

   |            |, as a deviation that should grow 

exponentially over time such that       
  . In this 

case,   will be equal to the maximum Lyapunov 

exponent. The spectrum of Lyapunov exponents is 

calculated as: 

         
   

 

 
  (

|              |

 
)  

If the spectrum       shows a linear increase with 

the same slope for most of the trajectories, then this 

slope can be taken as an estimate of the maximum 

Lyapunov exponent      (Fig. 6). 

 

 

Fig. 6. Determination of the maximum Lyapunov exponent. 

 

As the measurements by which the maximum 

Lyapunov exponent is determined, it is necessary to take 

the variable from the state vector of the system that is 

most influenced by other variables of the system. This 
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will be the voltage value on the high-voltage buses 

remote from the buses, on which the voltage is 

maintained by the regulators. 

To determine the Lyapunov exponents, the TISEAN 

library of nonlinear time series analysis was used [11]. 

The maximum Lyapunov exponent for the power 

system under consideration, determined from the power 

system state vector, is           . Thus, the chaotic 

behavior of the dynamic system is confirmed. 

Given the chaotic behavior of the system, it is 

important to understand whether it is possible to predict 

the behavior of a chaotic system and what data set is 

needed to perform an adequate prediction. The rate of 

generation of new information in a number of 

measurements can be related to the rate of growth of 

distances in the space of measurements according to the 

work of Pesin [12]. The rate of information generation 

can be estimated by the value of the average mutual 

information: 

    ∑               (
          

            
)

     

  

where    is an event from set  ,    is an event from set 

 ,        is the probability of an event from the set  , 

       is the probability of an event from the set  , 

           is the mutual probability of events. 

If we take measurements      observed at times   as 

the set of events  , and measurements        as events 

of the set  , then from the function of the average 

mutual information, we can determine the parameters of 

the series that are optimal for predictions measurements. 

So, to select the optimal discretization of measurements 

in [13], the first minimum of the function is found: 

     ∑|      |̅|        |̅

 

  

 ̅  
 

 
∑    

 

   

 

With a predetermined measurement discreteness (as 

it is in the system under study), the size of the 

measurement vector   used for forecasting can be 

varied: 

   
 

      

{
 
 

 
 ∑|      ̅||        ̅|

 

 ̅  
 

 
∑    

 

   

 

From the above calculations (Fig. 7), it can be seen 

that the first clear minimum appears after the 30th 

measurement snapshot, which, with a measurement 

frequency of 30 minutes, approaches the archive depth 

of one day. Thus, to obtain an adequate forecast in the 

model function, it is necessary to use more complex 

models than linear or moving average, which are often 

used in the Kalman filter. 

As rightly noted in [14], the application of dynamic 

state estimation using the Kalman filter is limited by a 

slow change in the mode parameters and a forecasting 

horizon of up to 1 min. Thus, the field of application of 

the dynamic state estimation proposed in [14] and 

similar works is limited to the automatic control of 

power plants, including for the purpose of emergency 

control. 

 

 

Fig. 7. Determination of the maximum Lyapunov exponent. 

 

For the purposes of optimal control, a model is 

required that provides a forecast for a time of the order 

of a day. Such a model can be models based on artificial 

neural networks. Moreover, there are two options for 

using such models: 

 direct use to obtain a forecast; 

 use as a model of system behavior in 

dynamic state estimation using the Kalman 

filter. 

The second variant of ANN application involves the 

use of a nonlinear Kalman filter, in particular, a sigma-

point filter. 
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