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Abstract. An universal algorithm for stochastic optimization is proposed. This algorithm is effective for 

dynamic optimization of process changing in time with taking into account the time-dependent cost of 

actions. Proposed algorithm is tested on the model of quite big power system and proved to be effective.    

1 Introduction  

The article proposes a methodology for modeling and 

dynamic optimization of electrical networks with 

stochastic elements. This task is relevant for the 

automatic and automated control of normal electric 

power system (EPS) states. 

The initial data for the optimization of the regime is 

the forecast of changes in the parameters of the regime 

for a given time. The forecast horizon is divided into 

separate time steps at regular intervals. On every time 

step there is the minimum required set of input data for 

calculating the power flow. 

Optimization aims for such a network from the point 

of view of a network company can be: 

 minimization of losses in the network, 

 restoration of the required voltage levels (in 

case of their violation), 

 optimization of electricity generation cost. 

The task of dynamic optimization is to minimize the 

total objective function over the entire forecast time 

horizon by choosing the compound and time of control 

actions    for each time point in the forecast range: 

   ∑   (  )

 

   

 

Optimization in the general case is a multi-objective 

optimization that can be solved by the weighted sum 

optimization method [1, 2], when individual objective 

functions are summed into one using appropriate 

weights. 
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where   ( ) is the objective function according to one 

of the considered criteria; 

   – weight coefficient corresponding to the 

objective function subtask; 

  is a vector of control parameters; 
 ( ) – constraints, both on the control parameters 

themselves, and functional constraints. 

Unlike static optimization of one state, in the 

dynamic optimization problem, it is important to take 

into account the “cost” of control actions, which depends 

not only on the system state vector, but also on time. 

The cost of managing one or another equipment 

depends on factors such as: 

 residual resource of equipment; 

 priority of using control actions; 

 the minimum allowable time between 

switchings with the same device. 

The optimization problem, taking into account the 

cost of the impact, is written as: 
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where    - control actions available at time  ;    
 - 

function of static optimization of each mode for time  ; 

   
 is a monotonically decreasing function of the cost of 

the control action    
, depending on the time of actions 

that were performed before time  . An approximate form 

of the penalty function is presented by expression (1). 

The meaning of this expression is that after applying the 

control action, its repeated application for some time 

should be blocked by a high value of the penalty 

function (Fig. 1). After some time, the cost of exposure 

decreases to a constant value   . 

   
    

(  (   
(   
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where    
 – is the time of the previous application of this 

control action. 

   
  ,    

  ,     ,       are some scaling 

and shifting constants. 

The penalty function formula (1) makes it possible to 

ensure the blocking of the reuse of this action while 

ensuring the smoothness of the objective function after 

applying this action. 
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Fig. 1. An example of the cost function of control. 

 

The presence in the objective function of the 

dependence on the time of application of the previous 

control actions makes the optimization process not a 

Markov process. Since the “cost” of the impacts and the 

dependence of the “cost” on time for different devices 

are different (for example, the tap changer of 

transformers can be switched rarely, but it can be 

controlled with the help of control shunt reactor  quite 

often), it will not be possible to tune out such effects and 

return the Markov properties to the optimization process. 

 

 

Fig. 2. Impact of the variance of the objective function on the 

optimization process. 

 

An additional complexity is introduced by the need 

to take into account the stochasticity of the initial data. 

The value of the variance of the objective function   can 

be greater than the improvement in the value of the 

objective function in the process of optimization     

(Fig. 2). In the limiting case, if the value of the 

uncertainty of the objective function is such that it can 

almost equally likely take any value from the permissible 

range, then it makes no sense to optimize such a regime. 

2 Statement of the problem of dynamic 
optimization of UPS states  

The problem of automatic optimal control of the 

electrical regime can be rather simplified, but it is quite 

adequately represented by the following model: 
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where    is the vector of power injections for the   time; 

   is the matrix of the admittances of the branches, 

the elements of which     
 are control actions; 

    
 is a monotonically decreasing function of the 

cost of the control action     
, depending on the actions 

that were performed before time  . 

The first stage of dynamic optimization is proposed 

to estimate the lower bound of the optimal solution and 

select from the entire set of control actions those that 

affect the optimal solution for the considered time range. 

To obtain the lower bound for the global 

optimization solution, a static optimization problem is 

solved for each time point. In this case, the time-

dependent component of the penalty is excluded from 

the objective function. The optimization problem for 

each point in time is written as: 
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where     is a constant component of the cost of the 

control action,    is the vector of free mode parameters 

sufficient for calculating the steady state (voltage power 

injection in balancing nodes),    are control actions 

available at time  . 

As a result of the calculation for each moment in 

time    
   . The total objective function for the entire 

time range [1…T] will also be less than when taking into 

account the cost components of time-dependent impacts. 

The problem of using existing stochastic 

optimization algorithms, such as the simulated annealing 

method for solving the problem of dynamic optimization 

of modes, is the search for an optimum over the entire 

space of optimization parameters, one of the 

measurements of which is time. 

3 The proposed stochastic optimization 
algorithm 

The lower bound of the objective function (2) for each 

time point is determined by the results of static 

optimization. For most moments of time in the process 

of optimal control, the term in the objective function, 

which depends on time (Fig. 1) is close to zero. To use 

this feature of the dynamic optimal power flow, a special 

algorithm for stochastic optimization of the dynamic 

process was developed, This algorithm efficiently finds a 
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set of optimal actions taking into account the time-

dependent component of the objective function. The 

algorithm is based on the principles of optimization by 

the particle swarm method [3]. 

The classical Particle Swarm Optimization algorithm 

is as follows. A swarm of particles is created. Each 

particle is an agent represented by coordinates in the 

space of control parameters and a velocity vector in this 

space. Each particle remembers the coordinates of the 

best solution found to it, and also knows the coordinates 

of the best solution found by the whole swarm of 

particles. 

Initialization of the initial coordinates and velocities 

of the particles is performed randomly, usually 

uniformly over the entire volume of the space of control 

actions, limited by the permissible limits of parameter 

variation. 

During the optimization process, the particle speed is 

changed according to the following algorithm: 

  (   )     ( )      (  ( )    ( ))   

     ( ( )    ( ))  

where   ( ) is the speed of the i-th particle at time  , 

  - coefficient of inertia, 

   - coefficient of movement to the local optimum, 

   - coefficient of movement to the global optimum, 

  ( ) - coordinates of the local optimum found by the 

time t, 

  ( ) - coordinates of the global optimum found by 

time t, 

  ,    - random values obtained at each optimization 

iteration. 

The coordinate of the particle in the solution space 

changes as follows: 

  (   )    ( )    ( ) 

A new algorithm based on the particle swarm 

algorithm is proposed, which solves the problem of 

dynamic optimal power flow with a large number of 

control actions. The working title of the algorithm is 

"River Stone PSO”. The meaning of this name will be 

clear based on its further description. 

In the optimization process, we move along the optimal 

trajectory determined by the results of static 

optimization. The objective function of dynamic 

optimization (3) can be rewritten as: 

   ∑(  ( )   ( ))

 

   

  (4) 

where   ( ) is the component of the objective function 

at the moment of time  , independent of the effects 

performed in the past moments of time (   ) and 

obtained as a result of static optimization of the electrical 

regime for each moment of time; 

 ( ) - component of the objective function depending 

on the impacts performed in the past moments of time 

(1). 

If the value  ( ) at the optimization step exceeds a 

certain threshold value  ( )   , then a range of times 

(slices) for which this condition is satisfied is selected 

and for this range, dynamic optimization is performed by 

the proposed algorithm. In this case, the upper range in 

the total objective function is the value of the time index 

  at which the value of  ( ) becomes less than  . 

   ∑(  ( )   ( ))

 

   

 

After a new range of time points is selected, at which 

dynamic optimization is required, a swarm of particles is 

created. Unlike the classical particle swarm algorithm, 

particles are not generated over the entire volume of the 

solution space, but are created at the current point 

determined by the results of static optimization at which 

the excess  ( )    first occurred. 

The initial velocity of each particle is set randomly, 

but so that in the measurement of the corresponding time 

the velocity component is negative, that is, the initial 

velocity is directed backward in time. 

For the directions of the search space for solutions 

corresponding to the control actions, the initial velocity 

is given as: 

   
          

For the direction of the solution search space 

corresponding to the time, the initial velocity is given as: 

   
          

In the algorithm for changing the speed, one more 

point of attraction is added for each particle. In addition 

to the optimal value found by the particle itself and the 

global optimum found by the entire swarm of particles, a 

point   is added corresponding to the end of the range 

 ( )    and the control actions obtained as a result of 

static optimization for the moment of time  :  

  (   )     ( )      (  ( )    ( ))   

     ( ( )    ( ))      (     ( )) 

where    is the coordinate corresponding to the end of 

the interval  ( )   , 

   - coefficient of movement towards the end of the 

interval, 

  ,   ,    - random values obtained at each 

optimization iteration. 

An illustration of the proposed algorithm is shown in 

Fig. 3. Moving along the optimal trajectory, we stumble 

upon a high value of  ( ), "rebound" back from it in 

time and find the optimal trajectory enveloping high 

values of the objective function, like a river bends 

around a stone lying in its bed. This is where the name of 

the algorithm comes from. 

 

 

Fig. 3. Illustration of the RS PSO algorithm. 

 

The proposed algorithm can be used not only for 

dynamic optimal power flow, but also for optimal 
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control of any, where the cost of the control action 

depends on the past time of its application. 

As an example for dynamic optimization, a model of 

a real power system (Fig. 4), prepared in the ANARES 

complex [4], was chosen. The number of nodes in the 

models nodes / branches of this electrical network is 

1248 and branches - 1481.  

For this power system, there are archived data 

presented in the form of a set of electrical modes with a 

frequency of 30 minutes. The depth of the archive is 1 

month. However, the archive data optimization 

algorithm itself is sufficient to check. In the industrial 

application of this algorithm, optimization is carried out 

based on the power flow forecast. 

 

 

Fig. 4. Considered electrical grid. 

 

 

Fig. 5. Changing the objective function during dynamic 

optimization RS PSO for 1st range. 

 

Fig. 6. Changing the objective function during dynamic 

optimization RS PSO for 2nd range. 

 

When considering a month time range in dynamic 

optimal power flow, 6 ranges were identified, on which 

dynamic optimization needed. For each range of each, no 

more than 4 iterations were required with 10 generated 

particles for each control action (the total number of 

particles is 730). The results of changing the objective 

function are presented in the figures. 5 – 11. 

On the graphs, fc denotes the total value of the static 

part of the problem with the current set of control 

actions, fd denotes the total value of the function taking 

into account the time-dependent component. 

The graphs show that in some cases the static part of 

the objective function increases, which is logical. It can 

be seen that the value is either strictly or significantly 

close to the original minimum boundary of the objective 

function. 

 

 

Fig. 7. Changing the objective function during dynamic 

optimization RS PSO for 3rd range. 

 

 

Fig. 8. Changing the objective function during dynamic 

optimization RS PSO for 4th range. 

 

Fig. 9. Changing the objective function during dynamic 

optimization RS PSO for 5th range. 

  

For comparison, an adaptive version of the ultrafast 

annealing simulation method was carried out. A series of 

calculations with random initial deviations of the state 

parameters showed that in some cases during the 
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operation of the dynamic optimization algorithm the 

resulting power flow deviates from the optimal one. In 

addition, the speed of calculation by the RS-PSO method 

significantly exceeds the speed of other stochastic 

algorithms. 

 

Fig. 10. Changing the objective function during dynamic 

optimization RS PSO for 6th range. 

 

 

Fig. 11. Optimization results on the EPS of the Irkutsk region 

with specified optimization constraints 

3 Conclusions  

An universal algorithm for stochastic optimization of a 

dynamic process in time with taking into account the 

time-dependent cost of actions is proposed. 

The proposed dynamic optimization algorithm has 

been tested on the model of a real power system. 

The proposed methodology for modeling and 

optimization of distribution networks with stochastic 

elements is implemented in the form of embedded 

software and can be used in automatic optimal and 

emergency control systems.  
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