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Abstract. The paper proposes a concept of building a digital twin based on the reinforcement learning method.
This concept allows implementing an accurate digital model of an electrical network with bidirectional au-
tomatic data exchange, used for modeling, optimization, and control. The core of such a model is an agent
(potential digital twin). The agent, while constantly interacting with a physical object (electrical grid), searches
for an optimal strategy for active network management, which involves short-term strategies capable of con-
trolling the power supplied by generators and/ or consumed by the load to avoid overload or voltage problems.
Such an agent can verify its training with the initial default policy, which can be considered as a teacher’s ad-
vice. The effectiveness of this approach is demonstrated on a test 77-node scheme and a real 17-node network
diagram of the Akademgorodok microdistrict (Irkutsk) according to the data from smart electricity meters.

1 Introduction

Innovative and structural changes in urban electric grids,
their increasingly close interaction with the transport sys-
tem, and the service sector determine the trends and related
research on the development of concepts for the "smart
neighborhood" with a subsequent transition to the "smart
city" [1]. The advent of digital electricity meters and
the development of telecommunications and elements of
smart electrical grids made it possible to increase flexi-
bility, optimize consumption, and reduce energy losses in
urban electrical networks by using various adaptive solu-
tions. It is becoming increasingly clearer that smart neigh-
borhoods must be able to leverage the enhanced monitor-
ing and flexibility of the electrical grid through the in-
telligent operation of distributed multi-energy resources
(heat, electricity, gas) in combination with automation in-
frastructure and information and communication technolo-
gies.

The digital twin technology can become an effective
solution to this issue. This technology is understood as a
virtual prototype of a real object, which allows conduct-
ing experiments and testing the hypotheses, predicting the
behavior of an object, and solving the problem of manag-
ing its life cycle. The digital twin of electrical networks is
a mathematical model of electrical networks implemented
based on special software. It is capable of assessing the
reliability of power supply to a smart neighborhood and
identifying vulnerabilities in its electrical network, devel-
oping and visualizing various scenarios for the network
development [2].

In 2019, the Irkutsk Scientific Center of the Siberian
Branch of the Russian Academy of Sciences launched a
∗e-mail: tomin.nv@gmail.com

project for installation of smart power meters to enable
more detailed and accurate monitoring of various parame-
ters of power consumption in the electrical networks of the
housing stock of a district in the city of Irkutsk (Akadem-
gorodok) [3]. The obtained data are planned to be used
to create a digital twin of the district electrical network.
This technology will make it possible to more effectively
fulfill some tasks related to the power system operation
(power consumption monitoring, network optimization,
minimization of power losses, modeling and forecasting
of various scenarios of network operation, and others), and
development (assessment of various forms of consumer
activity, reconstruction of the current network infrastruc-
ture, the appearance of new elements of system flexibility
in the near future).

The paper proposes a concept of building digital twin
based on reinforcement machine learning methods that al-
low implementing an accurate digital model of an electri-
cal network with bidirectional automatic data exchange,
used for modeling, optimization, and control. In this case,
the data transmitted from the digital twin are control ac-
tions. The data sent in the opposite direction are either
state updates or feedback signals. Since the digital twin
tracks all information about the analyzed electrical net-
work, changes in the state of the system are to be trans-
mitted to it for synchronization. Feedback signals that re-
flect the correctness of control actions are considered as a
variant of state updates.

2 Digital twin concept for power grid
through reinforcement learning

The Digital Twin is seen as a core enabler for smart and
autonomous manufacturing systems [4]. In essence, it is
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an ultra-realistic digital model of a product or system with
bidirectional automatic data exchange used for simulation,
optimization, and control. Such a dynamic virtual model
mirrors in real time a complex physical system in produc-
tion from a certain perspective, for example, electric power
network online analysis, and has built-in intelligence to
address the associated concerns, for example, power grid
security assessment.

However, various problems associated with the devel-
opment, updating, and application of digital twins in the
energy sector have not been solved yet and turn to be the
subjects of intensive research [5]. The technologies, such
as Generative Design [6] that allow one to automatically
find the optimal design solutions for power supply [7], are
developed very slowly. These problems are particularly
acute for the life cycle of the small consumers’ power sys-
tems of low voltage levels (0.4 kV), which usually have
neither powerful software nor highly qualified staff.

As repeatedly pointed out in the literature on digital
twins, machine learning and artificial intelligence could
realize those improvements through learning expressive
nonlinear models. Jaensch et al. [8] present a generic
concept for incorporating learning methods into Digital
Twins. Wang et al. [9] and Sapronov et al. [10] tune
parameters of the digital twin through machine learning.

We propose using an approach based on reinforcement
learning to adapt the digital twin’s control policy derived
from erroneous models, developed in [11] and modified in
our paper. We show its application to a case of a real distri-
bution electric system using Active Network Management
(ANM) as a core of digital twin.

2.1 Reinforcement learning

Reinforcement learning (RL) is inspired by the way hu-
mans learn. The learning agent observes the state xi ∈ X of
the environment, decides on control action ui ∈ U, which
alters the state, possibly receives a reward r according to
some reward function R(x, u), and observes a new state
xt+1 of the environment. Over time, it will learn to dis-
tinguish good actions from bad ones. More formally, the
underlying model is a Markov Decision Process (MDP).

In this study, we consider the RL problem formulation,
which may be free of dynamics, i.e., if the system state de-
pends on a particular part under processing but, regardless
of the selected action for that part, the next state is already
determined. In this formulation, at each round t, the en-
vironment prepares state , the learner selects action and
receives reward ri. The next state xt+1 prepared by the en-
vironment is unrelated to xi and ui. The agent aims to learn
policy π : X → U that satisfies the optimal value function:

Q(xi, ui) = E[R(xi, ui)]] (1)

Some studies show [5] that reinforcement learning ad-
dresses the focal issue of improving digital twins through
learning. The advantage of this method is that the created
virtual environment can go through an infinite number of
repetitions and scenarios in order to train agents remem-
bering all the situations that have arisen and the ways out

of them that gave the maximum reward. This approach al-
lows for the specifics of distribution networks with a large
number of components, and this number can only increase
in the case of the network transformation into an active
network (for example, the emergence of renewable energy
sources, storage devices, active loads).

2.2 Enhancing digital twin algorithm

Based on the reduced RL problem formulation, we mod-
ify the algorithm for enhancing digital twins for power
grids, proposed in [11]. For ease of understanding, Fig-
ure 1 presents a schema of the algorithm’s architecture.

Figure 1. The architecture of digital twin for power grid through
RL.

The digital twin observes state xi and decides on con-
trol action di based on its default policy πd. The RL al-
gorithm observes, both, xi and di. It decides then whether
to apply di or ui = πa(xi) to the physical system G (power
grid). The system then generates a feedback signal (re-
ward) ri and a next state xt+1, which is observed by the
digital twin. Reward is used to improve the RL agent pol-
icy πa.

With the digital twin, we have access to the default
policy πd that can be regarded as a teacher’s advice. The
default policy πd is an original control policy of the digi-
tal twin before we apply machine learning to compensate
for model inaccuracies. This default policy may be sub-
optimal, but arguably superior to the agent’s policy πa in
the initial learning period. The default policy adds each
round applied by the agent, i.e., followed, to a budget for
exploration. Once a sufficient amount is accumulated, the
agent may explore actions differing from the default under
the risk of performing worse.

3 Active network management

With the increasing share of renewable and distributed
generation in electrical distribution systems, Active Net-
work Management (ANM) becomes a valuable option for
a distribution system operator (DSO) to operate the system
securely and cost-effectively without relying solely on net-
work reinforcement. ANM strategies are short-term poli-
cies that control the power injected by generators and/or
taken off by loads to avoid congestion or voltage issues.
While simple ANM strategies involve curtailing tempo-
rary excess generation, more advanced strategies tend
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to shift the consumption of loads to anticipated periods
of high renewable generation. However, such advanced
strategies imply that the system operator has to solve large-
scale optimal sequential decision-making problems under
uncertainty [12].

We state these problems as MDP, where the system
dynamics describe the evolution of the electrical network
and devices, while the action space encompasses the con-
trol actions that are available to the DSO. Therefore in our
study, we consider the ANM model as an RL agent that
aims to learn policy πa in the digital twin (Fig. 1).

3.1 Operational planning problem statement

Operational planning is a recurring task performed by the
DSO to anticipate the evolution of the system, which is an
impact of the injection and the consumption patterns on
the operational limits of the system and make preventive
decisions to stay within these limits. We describe this evo-
lution by a discrete-time process having a time horizon T,
the number of periods used for the operational planning
phase. The period duration is 15 minutes, by analogy with
a typical market period. The power injection and with-
drawal levels are constant within a single period, and we
neglect the fast dynamics of the system, which may be
handled by real-time controllers [13]. The control actions
are aimed at directly affecting these power levels and can
introduce time coupling effects, depending on the type of
device.

We now describe two control tools of the system: the
modulation of the distribution generation (wind, solar, and
others) and the modulation of the flexible demand (heat
pumps, electric vehicle, and others) proposed in [5]:

1. Curtailment of a distributed generator. For each de-
vice belonging to the set G ⊂ D of distribution gen-
erators (DGs), the DSO can impose a curtailment
instruction, i.e., an upper limit on the generation
level of the DG. This request can be performed until
the period immediately preceding the one related to
the curtailment, and it is acquired in exchange for a
fee. This fee compensates for the producer’s finan-
cial loss associated with the energy that could not
be produced during modulation periods. We assume
that this fee is defined as a per-unit compensation for
the energy not produced, with respect to the actual
potential known after the market period.

2. Modulation of flexible loads. We also consider that
the DSO can modify the consumption of some flex-
ible loads, subset F of a full set of loads of the net-
work. An activation fee is associated with this con-
trol tool, and flexible loads can be notified of activa-
tion until the time immediately preceding the start of
the service. After the activation is performed at time
t0, the consumption of the flexible load d is modified
by a certain value during Td periods. For each of
these modulation periods t ∈ {t0 + 1, . . . , t0 + Td},
this value is defined by the modulation function
Pd(t − t0).

There are other approaches to control the system, such
as modulating the tariff signal(s), affecting the topology of
the network, or using distributed storage sources, which
are not considered in this research. Nor do we model the
automatic regulation devices that often exist in distribution
systems, such as On Load Tap Changers of transformers,
which automatically adapt to control the voltage level.

3.2 Optimal decision-making formulation

We formulate operational planning as an optimal sequen-
tial decision-making problem. The uncertainty of fu-
ture power injections from DGs relying on natural energy
sources and the variability of power consumption of the
loads should also be explicitly taken into account in the
ANM strategy. Therefore, we model this problem as an
MDP with mixed-integer sets of states and actions.

3.2.1 System state

The global state space S of the system is decomposed in
three subsets:

S = S (1) × S (2) × S (3) (2)

where S (1), S (2), S (3) - state subsets of distribution genera-
tion, consuption and past realizations of the uncertain phe-
nomena (i.e. wind speed, solar irradiance, and consump-
tion levels).

The power injections of the devices are sufficient to ob-
tain the value of the electrical quantities through equations
(3) and (4).

∀n ∈ N: S n = Pn + jQn = VnI∗n = VnY∗n·V
∗ (3)

∀n ∈ N: S n = Pn + jQn =
∑

d∈D(n)

(Pd + jQd) (4)

where S n is the apparent power injection at bus n and
Yn, denotes the nth row of the nodal admittance matrix;
Pd,Qd - active power and reactive power injection values,
which associated with every device (generators or loads)
d ∈ D(n)

3.2.2 Control actions

The control tools available to the DSO to control the sys-
tem are modeled by the setAs of control actions. This set
depends on the state st of the system because it is impossi-
ble to activate the flexibility service of a load if it is already
active. The components of vectors at ∈ As are defined by

at = ( p̄t, q̂t, actt) (5)

with p̄t, q̂t ∈ R
|G| such that, for period t + 1 and for each of

the generators g ∈ G,
By using this representation of the control actions, we

consider that a curtailment or flexibility activation action
targeting period t must always be performed at the period
t − 1.
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3.2.3 Reward function and goal

To evaluate the performance of a policy, we first specify
the reward function r : S × As × S → R that associates
an instantaneous reward for each transition of the system
from a period t to a period t + 1:

r (st, at, st+1) = −
∑
g∈G

max{0,
Pg,t+1 − Pg,t+1

4
}Ccurt
g

(
s(aux)
t+1

)
︸                                                        ︷︷                                                        ︸

curtailment cost of DGs

-
∑
d∈F

actd,tC
f lex
d︸           ︷︷           ︸

activation cost of flexible loads

− Φ(st+1)︸  ︷︷  ︸
penalty function

where Ccurt
g (gt + 1) is the one fourth of the day-ahead mar-

ket price for the quarter of hour qt + 1 in the day and C f lex
d

is the activation cost of flexible loads, specific to each of
them; Pg,t is a power curve of the DG. The function Φ
aims at penalizing a policy that leads the system to an un-
desirable state (e.g., that violates the operational limits or
induces many losses) and, together with Ccurt

g and C f lex
d , it

must be determined when instantiating the decision model.
Note that this equation is such that the higher the oper-
ational costs and the larger the violations of operational
limits, the more negative the reward function.

For a DSO, addressing the operational planning prob-
lem is equivalent to determining an optimal policy π
among all the elements of Π , i.e., the policy that satisfies
the following condition:

Jπ
∗

(s) ≥ Jπ(s), ∀s ∈ S , ∀π ∈ Π. (6)

The purpose of the first term in the penalty function
is to be an incentive to prevent the policy from bringing
the system to a state that violates operational limits. This
definition allows evaluating any kind of policy. In a math-
ematical programming setting, we remove this term from
the objective function and add operational constraints. The
new objective function becomes:

cost(st, at, st+1) =
∑
g∈G

max

0,
Pg,t+1 − Pg,t+1

4

Ccurt
g (qt+1)

+
∑

d∈F actd,tC
f lex
d + Closs(qt+1)

∑
n∈N

Pn,t+1

4

+ C f uel(qt+1)
∑

n∈N
Pn,t+1

4 .
(7)

where Closs(qt+1),C f uel(qt+1) are per-unit prices of losses
and fuel pour the quarter of hour qt + 1 in the day.

Given the discretization of the stochastic processes, the
objective function defined in Eq. (8), and the additional
constraints, we can formulate a new approximate optimal
policy π̂∗

M̂t

π̂∗
M̂t

(st) = arg
at

min
s(k)

t ,...,s(k)
t+T ,

a(k)
t ,...,a(k)

t+T−1,

∀k∈{1,...,W}

W∑
k=1

t+T−1∑
t′=t

[
Pkγ

t′−t

cost
(
s(k)

t′ , a
(k)
t′ , s

(k)
t′+1

)
(8)

4 Experimental calculations

We describe below the real and test instances of the ANM
problem used in the results section. The implementation
is has been done using the modified Python code available
from [14] to simulate the system and Pyomo [15] to build
the mathematical programs. Table 1 summarizes some rel-
evant data on these instances.

This section aims to illustrate the operational planning
problem and show the test and real instances. In particu-
lar, the policy π̂∗

M̂t
(st) calculated by (7)-(8) was applied to

every instance and penetration level of the flexible loads.
The empirical expected return of the policy, for a given test
instance, level of flexibility, network model, and scenario
tree complexity, is determined from 10 runs of 288 time
steps (i.e. of 2 days).

We also consider that the per-unit curtailment prices
are the same for all DGs. We used real values of market
prices Ccurt

g from [12], which fluctuate in domestic cur-
rency equivalent from 2,100 to 4,200 rubles for one re-
duced MW of distributed solar generation power. We also
use these values for the per-unit cost of losses, i.e. Closs(·).
Concerning flexible loads, three different penetration lev-
els exist for each test case. For every configuration, about
half of the flexible services offer a downward modulation,
followed by an upward rebound effect, and inversely for
the other half. The maximal and cumulated modulation
magnitude is presented in Table 1 to illustrate the potential
offered by flexible loads in every configuration.

Table 1. Summary of test instances

Case Case17 (real) Case77 (test)
Flex level low med. high low med. high
Nodes 17 77
Links 19 76
DGs 4 6
Loads 16 53
Controlled by the
DSO

5 7 11 12 33 31

Max flex (MW) 0.35 1.20 1.71 3.41 5.01 31
Peak load (MW) 5 9

4.1 Akademgorodok Case17

The main object of the ANM strategy research is a 17-
node 6 kV electrical network of the residential area of the
Akademgorodok microdistrict of Irkutsk (Figure 2). In
2019, smart electricity meters were installed in 60 multi-
story residential buildings of this area. The meters were
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Figure 2. Diagram of the electrical distribution network of the Akademgorodok microdistrict with a prospective scenario of the
presence of aggregated DGs

integrated into a single data collection system. This system
allows collecting hourly, daily, weekly and monthly data
on electricity consumption for each residential building.
In addition, one can selectively control a large number of
load flow parameters.

One of the objectives of this project is to create a model
of the digital twin of the Akademgorodok load center us-
ing this database. At the moment, the electric network of
Akademgorodok does not contain distributed generation
sources and load-controlled consumers. However, given
the implementation of several national programs, such as
the federal projects "Smart City" and the "Demand man-
agement of retail consumers" from EnergyNet and JSC
"SO UES", the study focused on a prospective scenario for
the development of the considered load center, associated
with the emergence of distributed generation and flexible
consumers capable of managing their demand.

DGs were represented by the options that involved so-
lar power generation plants and hybrid generators using
both solar energy and biomass gasification [16]. Solar
generation and biomass are promising sources of renew-
able energy for the Irkutsk region, and the most efficient
plants for the development of green technologies in urban
areas [17]. In the studied scheme, controlled loads implied
consumers who potentially have flexible technical capabil-
ities to manage their demand (for example, electric vehi-
cles and heat pumps).

We model an aggregate set of devices that are assim-
ilated to a single connection point at the 6 kV MV grid
(residential consumers and solar panels). At such nodes, a
set of residential loads and a set of distributed solar units

Figure 3. Visualization of power imbalance in the network

have been aggregated into a single load model and a single
generator model.

To determine the curtailment for the next time period,
we assume that all the curtailable generators will operate
at the active power upper limit Pmax. This limit is the de-
cision variable that we wish to compute at each time step.
As there is a cost per curtailed MWh, we must determine
the largest Pmax that enables operational constraints to be
met:

max Pmax

s.t. P(k)exo + Ncurt, Pmax≤P̄, 1 ≤ k ≤ Ntra js,

where P(k)exo is, for sampled fututure state k ∈

1, . . . ,Ntra js is, for a sampled future state k ∈

1, . . . ,Ntra js, the overall active power balance neglecting
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the injection of the curtailable generators. The solution to
this linear program is straightfoward: Pmax=mink

P̄−P(k)exo
Ncurt

. As
seen from Figure 3, modeling the scheme of distributed
generation leads to an increase in the voltage above the set
security limits. We now simulate this policy on a run of
2 days, and then compare with the same simulation run
without policy (Figure 4).

As the presented graph 4 shows, the found optimal
control strategy successfully prevents voltage rise by re-
ducing part of generation from distributed solar genera-
tors. Figure 5 shows the operating costs. One can also
see the peak associated with generation reduction. The re-
maining values of costs in Figure 5 are determined by the
active power losses Closs() and the costs of biomass com-
bustion C f uel() (the price of wood pellets was taken equal
to 7 rubles per 1 kW)

At the same time, this study did not involve the ser-
vice for activating flexible loads for the network of the
Akademgorodok microdistrict, since currently, there are
no developed procedures for managing the demand of
small retail consumers in Russian electrical networks. In
the next example, however, a test 77-node distribution net-
work scheme demonstrates an option with the ANM model
implementing both actions at once: distributed generation
reduction and demand management of flexible loads.

It’s important to note loads cannot be modulated in an
arbitrary way. There are constraints to be imposed on the
modulation signal, which are inherited from the flexibil-
ity sources of the loads, such as an inner storage capacity
(e.g. electric heater, refrigerator, water pump) or a process
that can be scheduled with some flexibility (e.g. industrial
production line, dishwasher, washing machine).

Figure 4. Simulation of the ANM optimal policy within 2 days
(upper)compared with the same simulation run without policy
(bottom)

Figure 5. Operating costs for the resulting policy

4.2 Test Case77

The test DN is based a 77-bus radial test system [18],
which includes 6 curtailable wind generators and also non-
curtailable residential photovoltaic panels. In this exam-
ple, we can test different levels of flexible loads expressed
in three different levels of penetration (Table 1). For each
configuration, about half of the flexible services involve
down-modulation, i. e. a decrease or shift in consump-
tion. The duration of the modulation signals for the 77-
node scheme is from 6 to 24 time periods. The modeling
results are shown for one day in Figure 6.

Experiments show that the policy slightly benefits
from an increase of the flexibility level of loads in the de-
terministic setting but not in the presence of uncertainty.

5 Conclusions

The advent of digital interval electricity meters and the de-
velopment of telecommunications and elements of smart
grids in recent years have offered an opportunity to in-
crease elasticity, optimize consumption, and reduce energy
losses in urban electrical networks through the use of var-
ious adaptive solutions. These are the targeted impact on
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consumer equipment and (or) change in the operating con-
ditions of the electrical grid in real time, when necessary.
Currently, these tasks can be effectively fulfilled using the
concept of digital twin.

This paper has shown that digital twin, used for control
of power grids, can be adapted through RL. Based on that,
we propose to use the learning digital twin algorithm for
enhancing the control policy of digital twins in continuous
domains. We also propose we consider ANM model as an
RL agent that aims to learn a policy πa in the digital twin.
The effectiveness of this approach is demonstrated on a
test 77-node scheme and a real 17-node network diagram
of the Akademgorodok district, which is undergoing the
stage of active smartization and digitalization.

The ANM concept is an alternative or addition to net-
work reinforcement in the event of the massive integra-
tion of renewable energy sources and demand manage-
ment in distribution systems in the near future. Mathemat-
ically, operational planning, which is a preventive version
of ANM considered in this paper, is the optimal problem of
successive decision making under uncertainty. The prop-
erties of the operational planning problem are the need
for optimization over a sufficiently long time horizon to
take into account the uncertainty of generation and con-
sumption, and modeling of discrete decisions related to
the modulation of flexibility services. In an attempt to go
beyond one problem-solving method, we formulate this
problem as a MDP that does not require a specific way
of problem-solving.
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