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Abstract. The work discusses the technique for constructing an integral model of a nonlinear dynamic 

system with a vector input based on Volterra polynomials as applied to a section of the steam-water path of 

the power unit of the Nazarovo power station. The complexity of the applying the technique presented in the 

work is analyzed, and the number of initial data required to build a mathematical model in the case of a 

vector input disturbance with an arbitrary dimension is calculated. 
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1 Introduction 
Various methods and algorithms are used to construct 

mathematical models of energy objects. For example, in 

[1] the authors use associative search algorithms and 

imprecise algorithms to identify the state of energy 

objects. The method of control equations was used to 

estimate the state of electric power systems [2]. Artificial 

neural networks are used to solve electric power 

problems [3]. The authors of [4] build a mathematical 

model using the methods of J. Box and G. Jenkins to 

study the operation of the combustion unit. 

In this work, the technique of constructing 

mathematical models using the apparatus of Volterra 

integro-power polynomials is considered. This apparatus 

is universal and also convenient for describing such 

dynamic processes, the application to which of other 

methods is extremely difficult or practically impossible, 

for example, during the operation of energy objects. 

Methods for constructing a model of a segment of a 

steam-water path of a power unit of Nazarovo power 

station based on this apparatus were considered in [5, 6]. 

In these papers, scalar models (with one input and one 

output) were considered. 

This paper presents the development of an integral 

model for the case of a two-dimensional input: 

disturbances in the flow rates of steam and cooling water 

to a condensing unit. The analysis of the required 

volume of data, got from test experiments, to construct a 

model of a dynamic system with a vector input of 

arbitrary dimension is carried out. 

2 Description of the technique 
The considered mathematical apparatus is used to 

describe objects of the "input-output" type, they are also 

called objects of the "black box" type (Fig. 1). In this 

case, a dynamic object can be represented as a finite 

segment of the Volterra integro-power series [7] 
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Fig. 1. Block diagram of a dynamic system of the "black box" 

type. 

 
Here the input signal 	 
1( ) ( ), , ( ) T

px t x t x t� 
, ( )p, (  is a vector 

function of time; the response ( )y t  is a scalar function 

of time; Volterra kernels 
1 ... mi iK  are symmetric in the 

variables 
1,..., ms s , that correspond to the coinciding 

indices 1,..., mi i . In (1), (2) the system is stationary, i.e. 

its dynamic characteristics do not change over the entire 

time of the transient process. In other words, the kernels 

1 ... mi iK  are time-independent.  
In contrast to the scalar case, in the case of a vector 

input signal, terms appear in which the Volterra kernels 

are non-symmetric functions concerning the variables 

1,..., ms s .  

Construct a model of the form (1), (2) means to solve 

the identification problem. The technique of restoring 

symmetric kernels, based on the supply of test signals in 

the form of combinations of Heaviside functions, is 

described in detail in the monograph [8]. The 

identification of non-symmetric kernels using this 

technique is described in [9].  
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Consider the developed technique in relation to 

modeling a specific heat and power object to get 

recommendations for building a vector model. 

3 Description and analysis of the 
results of using test experiments 
Consider a segment of the steam-water path of the power 

unit of Nazarovo power station for a vector input signal 

containing two components (Fig. 2). This segment 

includes a condenser K type 80-KTC-1. Scalar models 

have already been constructed for it [6]. Therefore, to 

construct a vector model with two input signals, it is 

sufficient to find the values of the non-symmetric kernel. 

 

Fig. 2. Schema of segment of the steam-water path of the 

power unit.

It is assumed that the input is a simultaneous supply 

of water flow wD�  and steam flow 1vD� . Their initial 

values are 0 11562 2wD .�  kg/s and 0 45 51vD .�  kg/s. 

Depending on the choice of the output signal, we get two 

models: the output signal is the pressure deviation p�  in 

the condenser in one model and the deviation of the 

cooling water temperature 1t�  at the outlet of the 

condenser in the other model. 

To solve the identification problem, it is necessary to 

obtain the required number of initial data to determine 

the values of the non-symmetric kernel. The initial data 

are sets of input and output signals on a mesh determined 

by the chosen numerical method. The data collection is 

carried out by analogy with the work [6], with the help 

of the “P150” Software Package, which is a development 

of the model of the power unit of the Irkutsk Central 

Heating and Power Plant (CHPP-10) [10]. The 

mathematical model of the power unit of the Irkutsk 

CHPP-10 includes about one hundred algebraic-

differential and five hundred algebraic equations and 

closing relations. 

According to the technique [8], we input signals of 

the form: 
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Here e( )t  is the Heaviside function, , �  are the 

amplitudes of the disturbing influences. 

The graphs shown in Fig. 3 correspond to (3), and the 

graphs shown in Fig. 4 correspond to (4) at 

0 00.3 , 0.3w vD D �� � . In the figures, the number 1 

indicates the graphs for 88, 8t �� � , number 2 – for 

88, 48t �� � , number 3 – for 120, 80t �� � , number 

4 – for 120, 120t �� � . 

 

 
Fig. 3. The pressure deviation p�  in the condenser and the 

deviation of the cooling water temperature 1t�  at the outlet of 

the condenser for input signal (3). 

Fig. 4. The pressure deviation p�  in the condenser and the 

deviation of the cooling water temperature 1t�  at the outlet of 

the condenser for input signal (4). 
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It can be seen from the graphs that the disturbances 

presented here act in opposition to each other while the 

change in steam flow has a greater impact on the output 

than the water flow. 

This type of graphs is consistent with the application 

of our chosen technique. It can be seen that these system 

responses either reach a new stationary state or return to 

the previous one. This is important for applying this 

methodology. We also note that with the given input 

actions wD� , 1vD� , the values of p�  and 1t�  are 

stabilized with an accuracy of 
510� ��  for 23Т �  (s) 

and with an accuracy of 
610� ��  for 31Т �  (s). As a 

result, we find that the duration of transients covers the 

time range [0, ]t T� , where 35Т �  (s). 

In this section, we received recommendations for 

choosing the length of the time interval for given input 

disturbances. Further, we will consider the complexity of 

building such a model for an arbitrary number of input 

disturbances. 

4 Analysis of the complexity of the 
technique implementation in the case of 
a vector input disturbance of arbitrary 
dimension
Let the vector function of the input signals have an 

arbitrary dimension equal to p , i.e. 

	 
1( ) ( ), , ( ) T
px t x t x t� 
, ( )p, ( . Consider a segment of the 

Volterra series (1) for 2N �  and 3N � . 

Let 2N � , then (1), (2) takes the form 
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then (5) takes the form 
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The problem of calculating the number of necessary 

input data for building a model consists of two stages. At 

the first stage, the number of input signals for solving the 

decomposition problem is determined. At the second 

stage, a numerical method is chosen and, depending on 

the mesh division, we count the number of equations to 

identify each kernel. 

Move on to the first stage. To isolate the terms 

containing symmetric kernels, we supply a series of 

signals with amplitudes 
( )1 i

  and 
( )2 i

  (we assume ( )j  

equal to zero for j i� , 1,j p� ), where 1,i p� . In this 

case, the condition 
( ) ( )1 2 0
i i

 � �  must be satisfied [10]. 

As a result, we obtain a system of algebraic equations 
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Thus, the number of all series of signals for the terms 

containing symmetric kernels is 2 p . 

Solving (7), we get 
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For terms containing non-symmetric kernels, we 

supply signals with amplitudes 
( )1 i

  and 
( )1 j

 ( j i� ). 

Signals whose numbers differ from i  and j  are set 

equal to zero. Thus, we have 
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and, taking into account (8), we obtain 

        	



( ) ( ) ( ) ( )

1 1( ) ( )

( ) ( )

1 1( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2 2

1 1 1 1

0, 0, ,0, 0, ,0, 0

1 1

0, 0, ,0, 0, ,0, 0

1 1

2 2

1 1 1 1

( ),

1
( )

.

i i j j

j i

i j

j i

i j

i i j j

i i ii ii j j jj jj

ji ji

ji ji

i i ii ii j j jj jj

V K V K V K V K

V K у t

V K у t

V K V K V K V K

 

 

   

 

 

   

� � � � � �

� � �

� �
�

� � � � � �

0, ,0, 0, ,0, 01 1( )1

( )(1 )
, ,

) (
1, 1 (1(1,0, 0,,0, 0,1

, 0, 0 0, ,0, 01 1( )1

( )(11 )
, , , ,1 ) ((1(1,0, 0,,0, 0,1

(9) 

The number of all series of signals for terms 

containing non-symmetric kernels is 2

рС . 

For 3N �  we do the same. Omitting cumbersome 

calculations, we find that the number of signal series for 

the terms containing symmetric kernels is 3p , the 

number of all series of signals for terms containing 

partially symmetric kernels is 
23 рС  and the number of all 

series of signals for terms containing non-symmetric 

kernels is 
3

рС . 

Move on to the second stage. Suppose that the 

method of middle rectangles is used to construct a 

discrete model, where n  is the number of nodes of a 

uniform mesh. 

Based on the assumptions made, in case 2N � , we 

have n  unknowns for terms containing a one-

dimensional kernel, and р  terms themselves. We have 

( 1) / 2n п �  unknowns for the terms containing a two-

dimensional symmetric kernel and р  terms themselves, 

as in the one-dimensional case. 
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In the term containing the non-symmetric kernel, due 

to the lack of symmetry, the number of unknowns is 
2n , 

and the number of signals supplied is 
2

рС . Thus, the 

required number of initial data for 2N �  is 

2 2 2

2

( 1)
S 2 .

2
р р

рn пр рп С С п�� �� � � �� �
� �

 

 

For 3N � , the first two terms are defined in a 

similar way as for 2N � . Figure 5 will help to 

determine the number of unknowns for terms containing 

three-dimensional integrals.  

In the case of symmetry, the domain of definition is 

divided into six parts and it is enough to determine the 

number of nodes in one of these parts. Fig. 5 show that 

the required number of unknowns, in this case, is defined 

as 
( 1)( 2)

.
6

n n n� �
 The number of terms with three-

dimensional integrals is .р  

 

 
Fig. 5. Domain of definition of three-dimensional kernels at 

3n � . 

 

In the case of partial symmetry, the domain of 

definition is divided into three subdomains of the same 

volume. The number of nodes of one such subdomain is 
2 ( 1)

.
2

n n�
 The number of terms containing partially 

symmetric kernels is ( 1).р р �  

Thus, in a term containing the non-symmetric kernel, 

due to the lack of symmetry, the number of unknowns is 
3n , and the number of such terms is 

3

рС . Therefore, the 

required number of initial data is found as 

3
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5 Conclusions 
The work discusses the applicability of the technique 

using the representation of a dynamic object in the form 

of a segment of the Volterra series for constructing a 

vector model. The segment of the steam-water path of the 

power unit of the Nazarovo power station is considered 

as an example. The time to reach the stationary mode 

was analyzed and recommendations for choosing the 

length of the time interval were obtained for input 

disturbances of a special type. The analysis of the 

complexity of applying the m technique presented in the 

work is carried out. The number of unknowns necessary 

for constructing a mathematical model is obtained in the 

case of a vector input disturbance with an arbitrary 

dimension for the quadratic and cubic segments of the 

Volterra series. 
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